<table>
<thead>
<tr>
<th>SEM</th>
<th>PAPER CODE</th>
<th>MARKS</th>
<th>CREDITS</th>
<th>TOPIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CMSM4121</td>
<td>100</td>
<td>4</td>
<td>Data Structure and Analysis of Algorithms</td>
</tr>
<tr>
<td></td>
<td>CMSM4122</td>
<td>100</td>
<td>4</td>
<td>Advanced Database Management System</td>
</tr>
<tr>
<td></td>
<td>CMSM4123</td>
<td>100</td>
<td>4</td>
<td>Computer Architecture</td>
</tr>
<tr>
<td></td>
<td>CMSM4124</td>
<td>100</td>
<td>4</td>
<td>Distributed Operating System</td>
</tr>
<tr>
<td></td>
<td>CMSM4156</td>
<td>100</td>
<td>3</td>
<td>Laboratory 1: PL/SQL and OS Programming Lab</td>
</tr>
<tr>
<td></td>
<td>CMSM4157</td>
<td>100</td>
<td>3</td>
<td>Laboratory 2: Object Oriented Programming Lab</td>
</tr>
<tr>
<td></td>
<td>CMSM4221</td>
<td>100</td>
<td>4</td>
<td>Software Engineering</td>
</tr>
<tr>
<td></td>
<td>CMSM4222</td>
<td>100</td>
<td>4</td>
<td>Computer Networking and Internet Technologies</td>
</tr>
<tr>
<td></td>
<td>CMSM4223</td>
<td>100</td>
<td>4</td>
<td>Microprocessors and Micro controllers</td>
</tr>
<tr>
<td></td>
<td>CMSM4224</td>
<td>100</td>
<td>4</td>
<td>Computer Graphics and Multimedia</td>
</tr>
<tr>
<td></td>
<td>CMSM4256</td>
<td>100</td>
<td>3</td>
<td>Laboratory 3: Socket Programming, Microprocessor and Microcontroller Lab</td>
</tr>
<tr>
<td></td>
<td>CMSM4257</td>
<td>100</td>
<td>3</td>
<td>Laboratory 4: Internet Technologies I Lab</td>
</tr>
<tr>
<td>2</td>
<td>CMSM4321</td>
<td>100</td>
<td>4</td>
<td>Compiler Design</td>
</tr>
<tr>
<td></td>
<td>CMSM4322</td>
<td>100</td>
<td>4</td>
<td>Artificial Intelligence</td>
</tr>
<tr>
<td></td>
<td>CMSM4323</td>
<td>100</td>
<td>4</td>
<td>VLSI Design</td>
</tr>
<tr>
<td></td>
<td>CMSM4324</td>
<td>100</td>
<td>4</td>
<td>Cryptography and Network Security</td>
</tr>
<tr>
<td></td>
<td>CMSM4356</td>
<td>100</td>
<td>3</td>
<td>Laboratory 5: Internet Technologies II and Artificial Intelligence Lab</td>
</tr>
<tr>
<td></td>
<td>CMSM4357</td>
<td>50</td>
<td>2</td>
<td>Term Paper</td>
</tr>
<tr>
<td></td>
<td>CMSM4358</td>
<td>50</td>
<td>2</td>
<td>Project 1</td>
</tr>
<tr>
<td>3</td>
<td>CMSM4421</td>
<td>100</td>
<td>4</td>
<td>Image Processing and Pattern Recognition</td>
</tr>
<tr>
<td></td>
<td>CMSM4431</td>
<td>100</td>
<td>4</td>
<td>Mobile Communications (Elective)</td>
</tr>
<tr>
<td></td>
<td>CMSM4432</td>
<td>100</td>
<td>4</td>
<td>Data Mining and Data Warehousing (Elective)</td>
</tr>
<tr>
<td></td>
<td>CMSM4433</td>
<td>100</td>
<td>4</td>
<td>Object Oriented Technology (Elective)</td>
</tr>
<tr>
<td></td>
<td>CMSM4456</td>
<td>200</td>
<td>8</td>
<td>Project 2</td>
</tr>
<tr>
<td></td>
<td>CMSM4457</td>
<td>100</td>
<td>3</td>
<td>Seminar</td>
</tr>
<tr>
<td></td>
<td>CMSM4458</td>
<td>100</td>
<td>4</td>
<td>Grand Viva</td>
</tr>
</tbody>
</table>
CMSM4121

Marks: 100
Data Structure and Analysis of Algorithms

<table>
<thead>
<tr>
<th>Review of basic algorithmic analysis: Asymptotic analysis of upper and average complexity bounds; best, average, and worst case behaviors; big-Oh, big-Omega and big-Theta; standard complexity classes; empirical measurements of performance; time and space tradeoffs in algorithms; recurrence relations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Divide and Conquer: Merge Sort. Quick Sort, Selection Problem, Median and Order Statistics, Strassen’s Matrix Multiplication, Convex Hull Algorithms.</td>
</tr>
<tr>
<td>Greedy Algorithm: Knapsack algorithm, Huffman Codes, Task Scheduling</td>
</tr>
<tr>
<td>Dynamic Programming: Chained matrix multiplication</td>
</tr>
<tr>
<td>Backtracking Algorithms: 8 queens problem</td>
</tr>
<tr>
<td>Branch and Bound: Travelling Salesperson problem.</td>
</tr>
<tr>
<td>Graph and Tree Algorithms: BFS, DFS, Topological Sort, Minimum Spanning Tree (Prim’s and Kruskal’s Algorithm), Dijkstra’s Algorithm, Bellman Ford Algorithm, Bipartite Graphs, Binary Search Tree, AVL tree, 2-3 Tree, Red Black Tree, Splay Tree – Amortised analysis.</td>
</tr>
<tr>
<td>Complexity Theory: Tractable and intractable problems, Concepts of computable functions; Polynomial reducibility: P and NP: Definition of the classes P and NP, NP-completeness (Cook’s theorem), Standard NP complete problems,</td>
</tr>
<tr>
<td>Books and References:</td>
</tr>
<tr>
<td>1. T.H.Cormen et al -Introduction to Algorithms, PHI</td>
</tr>
</tbody>
</table>

CMSM4122

Marks: 100
Advanced Database Management System

<table>
<thead>
<tr>
<th>Transaction Management and Concurrency Control: States of Transaction, ACID properties, consistency model, storage model, cascading rollback, recoverable schedules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concurrency: Schedules, testing for serializability, Lock-based protocols-Two-phase locking protocol, Timestamp based protocol, optimistic techniques, deadlock handling.</td>
</tr>
<tr>
<td>Recovery: Failure classification, storage hierarchy, log-based recovery, shadow paging</td>
</tr>
<tr>
<td>Query processing and optimization: Steps of query processing, query interpretation, equivalence of expression, estimation of cost, join strategies</td>
</tr>
<tr>
<td>Concepts of Normalisation: 4NF, 5NF.</td>
</tr>
<tr>
<td>Distributed Database: Principles of distributed database, DDBMS, levels of distribution transparency, data fragmentation, replication and allocation techniques.</td>
</tr>
<tr>
<td>Books and References:</td>
</tr>
<tr>
<td>2. Korth, Silberschatz :Database System Concepts, McGrawHill,</td>
</tr>
<tr>
<td>3. Ozsu,Principals of Distributed Database System,Pearson Education.</td>
</tr>
</tbody>
</table>
CMSM4123

Marks: 100

Computer Architecture

- **Introduction to Parallel Processing:** Parallel Computer Structures, Architectural Classification Parallel Processing Applications
- **Memory and I/O sub-systems:** Hierarchical Memory Structures, Cache Memories and Management, I/O sub-systems
- **Principles of Pipelining and Vector Processing:** Pipelining, Instruction and Arithmetic Pipelines, Principles of designing pipelined processors, vector processing requirements
- **Structures and Algorithms of Array Processors (SIMD Computers):** SIMD Array Processors, SIMD Interconnection networks, Parallel Algorithms for Array Processors
- **Algorithm examples** – matrix multiplication, sorting
- **Multiprocessor Architecture and Programming:** Functional Structures, Interconnection Networks, A few example multistage INs, Parallel Memory Organisations

Books and References:

CMSM4124

Marks: 100

Distributed Operating System

- Role and basic functionality, concurrent processing, scheduling, memory management, Device management, File Systems Management. Case Study –Unix/Linux (Architecture, study of system calls)

Books and References:

2. Singhal, Shivaratri, Advanced Concepts in Operating Systems, TMH.
3. P.K.Sinha, Distributed Operating Systems, PHI

CMSM4156

Marks: 100

Laboratory 1: PL/SQL and OS Programming Lab

- **Group A: PL/SQL Lab**
- **Group B: OS Programming Lab** (Special reference to OS as a concurrent program)

CMSM4157

Marks: 100

Laboratory 2: Object Oriented Programming Lab
CMSM4221

Marks: 100
Software Engineering

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Project management:</td>
<td>Process, software configuration process models, requirements change management process, Project management process</td>
</tr>
<tr>
<td>Effort Estimation:</td>
<td>Function Points, COCOMO, Project scheduling and staffing, Risk Management</td>
</tr>
<tr>
<td>Software metrics and Reliability:</td>
<td></td>
</tr>
</tbody>
</table>
| **Books and References:** | 1. Roger S. Pressman, Software Engineering - A Practitioner’s Approach, McGraw-Hill
 2. Somerville, Software Engineering, Pearson Education
 3. Jalote, Software Engineering, Narossa Publication |

CMSM4222

Marks: 100
Computer Networking and Internet Technologies

<table>
<thead>
<tr>
<th>Network Architecture:</th>
<th>Layered architecture and protocol hierarchy TCP/IP protocol suite, Services and important functions of each layer.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Area Networks:</td>
<td>Aloha and Carrier Sense Protocols, Ethernet, Token Ring, FDDI.</td>
</tr>
<tr>
<td>Flow Control:</td>
<td>Stop and wait ARQ, Sliding Window, Go Back N, Selective Repeat. 802.11: Access points: Distributed Coordination (DCF) and Point Coordination(PCF).</td>
</tr>
<tr>
<td>Connecting Devices:</td>
<td>Bridges, Backbone Networks, Virtual LAN.</td>
</tr>
<tr>
<td>Internetworking:</td>
<td>Virtual Circuits and datagrams, IP addressing, Subnetting, CIDR.</td>
</tr>
<tr>
<td>Routing Algorithms:</td>
<td>Shortest path Routing, Flooding, Distance Vector Routing, Link State Routing, Hierarchical Routing, Broadcast and Multicast Routing, Routing for mobile hosts.</td>
</tr>
<tr>
<td>Routing Protocols:</td>
<td>RIP, OSPF, BGP</td>
</tr>
<tr>
<td>Process to Process Delivery:</td>
<td>TCP and UDP.</td>
</tr>
<tr>
<td>Congestion Control and Quality of Service:</td>
<td>Congestion control Techniques, Congestion control in TCP. Techniques for improving the QoS.</td>
</tr>
<tr>
<td>Application Layer:</td>
<td>Sockets, DNS, WWW, SMTP, HTTP.</td>
</tr>
<tr>
<td>WDMA:</td>
<td>Description and implementation on fiber network.</td>
</tr>
</tbody>
</table>
| **Books and References:** | 1. B.Forouzan – Data Communication and Networking. TMH
 2. A Tanenbaum – Computer Networks, PHI |
CMISM4223 Marks: 100 Microprocessors and Micro controllers

80x86 - Architecture and Organization, Instruction Set, Assembly Language Programming, Memory Interfacing, Data Transfer Techniques, I/O Ports, Interfacing, Programmable Interrupt and DMA Controllers, Serial Mode Data Transfer, Programmable Timer/Counter, Designing Microprocessor Based Systems.

8051 MICROCONTROLLER - Comparison of microprocessor and micro controller, architecture, pin function, CPU timings and machine cycle, internal memory organization, pc and stack, i/p-o/p ports, counters and timers, serial data i/p-o/p, interrupts. Instruction set, addressing modes, Programming 8051, programming timers, asynchronous serial data communication, timer and hardware interrupt, service routine.

External memory and memory address decoding, memory mapped I/O, time delay subroutines, look-up tables implementation, interfacing matrix keyboard and seven segment display through scanning and interrupt driven programmes, interfacing A/D and D/A converters using handshake signals and waveform generation interfacing with 8255 i/p-o/p, parallel printer. Examples and overview of advanced microcontrollers like 80196

Books and References:

CMISM4224 Marks: 100 Computer Graphics and Multimedia

Introduction to computer graphics & graphics systems

Scan conversion: Points & lines, Line drawing algorithms; DDA algorithm, Bresenham’s line algorithm, Circle generation algorithm; Ellipse generating algorithm; scan line polygon, fill algorithm, boundary fill algorithm, flood fill algorithm.

Transformation & Clipping: Basic transformations; Matrix representations & homogeneous coordinates; Transformation of points, lines, parallel lines, intersecting lines; general parallel projection transformation; clipping: viewport clipping, point clipping, line clipping, clipping circles, polygons & ellipse.

Curves: Curve representation, surfaces, Bezier curves, B-spline curves.

Surfaces: Depth comparison, Z-buffer algorithm, Back face detection, BSP tree method scan-line algorithm; Hidden line elimination. Color & shading models; Light & color model; interpolative shading model; Texture.

Books and References:

2. Van dam Foley: Computer Graphics, Addison-Wesley
CMSM4256
Marks: 100
Laboratory 3: Socket Programming, Microprocessor and Microcontroller Lab

Group A: Socket Programming Lab
Group B: Microprocessor and Microcontroller Lab

CMSM4257
Marks: 100
Laboratory 4: Internet Technologies I Lab

- JavaScript, PHP, MySQL

CMSM4321
Marks: 100
Compiler Design

Review: Grammars, Languages – types of grammars and their recognizers, Basic concepts of translators: boot strapping, cross compiler, Different phases of compilation.

Lexical analyzer: Concepts, Tokens, Schemas, Design using FSM, LEX.

Syntax Analysis: Top down and Bottom up parser; Operator precedence; Recursive descent; LL (1); LR (1); LALR (1); Comparison, YACC.

Intermediate code generation: Three Address Code, Representation of three address code – Quadruples, Triples and Indirect Triples.

Syntax directed translation: Attributes, Semantic Actions, Translation schemes.

Code generation: Basic blocks, loop optimization, flow graph, DAG representations of basic blocks.

Error handling: detection, reporting, recovery and repair

Symbol tables: Organization and management techniques.

Runtime storage management: static allocation; dynamic allocation, activation records; heap allocation, recursive procedures

Books and References:

1. Alfred V. Aho and Jeffrey D. Ullman, Principles of Compiler Design, Narossa Publication
3. Peter Linz, Formal Language and Automata Theory, Narossa Publication
<table>
<thead>
<tr>
<th>CMSM4322</th>
<th>Marks: 100</th>
<th>Artificial Intelligence</th>
</tr>
</thead>
</table>

Introduction: AI applications, AI techniques, AI Problems. Importance of AI

State Space search: State Space Graphs, Implicit and explicit graphs, Production Systems, formulating the state-space; Uninformed search: breadth first search, depth first search; Uniform cost algorithm; Informed search: use of heuristics, A* algorithm, Admissibility of A*; Analysis and comparison of search algorithms.

Adversarial Search: Two agent games, AND/OR graphs, Minimax procedure, and game trees, Alpha – Beta pruning procedure, learning evaluation functions.

Constrained Satisfaction Search: Introduction to Constrained Satisfaction search (CSP), Applications, Algorithms to CSPs, Symbolic constraints and propagation.

Expert Systems: Introduction to ES, knowledge based systems, knowledge representation, rule based approach: forward and backward chaining, semantic nets based approach, frame based approach.

AI tools and techniques: First order predicate calculus, resolution, unification, natural deduction system, refutation

Uncertainty: different types of uncertainty - degree of belief and degree of truth, various probability constructs - prior probability, conditional probability, probability axioms, probability distributions, and joint probability distributions, Bayes’ rule, other approaches to modeling uncertainty, Dempster-Shafer theory, fuzzy sets/logic.

Advanced Concepts: Introductory concepts of soft computing techniques.

Books and References:
1. Elaine Rich and Kevin Knight: Artificial Intelligence, TMH
2. Dan W. Patterson: Introduction to Artificial Intelligence and Expert Systems, PHI
3. S. Russel and P. Norvig, "Artificial Intelligence, A modern Approach"
CMSM4323 Marks: 100 VLSI Design

Introduction to VLSI systems: Overview of VLSI technology, Fabrication and Layout of CMOS (Fabrication Process Flow, CMOS n-Well Process, Layout & Design Rules, CMOS inverter Layout Design), IC production process & Packaging, MOS Transistors, Circuit characterization and performance estimation, Circuit simulation, Combinational and sequential circuit design, Static and dynamic CMOS gates, Memory system design.

VLSI automation Algorithms: Partitioning: problem formulation, classification of partitioning algorithms, Group migration algorithms, Kernighan – Lin Heuristics.

Floor planning & pin assignment: problem formulation, placement and floor planning, floor planning algorithms for mixed block & cell design, Floor planning based on Simulated Annealing.

Global Routing: Global Routing between blocks, classification of global routing algorithms, Maze routing algorithm, line probe algorithm, Steiner Tree based algorithms, ILP based approaches.

Detailed routing: Problem formulation, classification of routing algorithms, single layer routing algorithms, two layer channel routing algorithms, three layer channel routing algorithms, and switchbox routing algorithms, constrained & unconstrained via minimization.

Digital Design using VHDL.

Books and References:

CMSM4324 Marks: 100 Cryptography and Network Security

Cryptography: Basic objectives of cryptography, private-key and public-key cryptography, mathematics of cryptography - one-way and trapdoor one-way functions, cryptanalysis, attack models, classical cryptography, block ciphers, stream ciphers, Computer Based Symmetric Key Cryptographic Algorithms: Data Encryption Standard (DES), International Data Encryption Algorithm (IDEA). Computer Based Asymmetric Key Cryptographic Algorithms: RSA Algorithm, message digest, Digital Envelope, Digital Signatures, Certificates and standards, key exchange, entity authentication.

Books and References:
Introduction:
Introduction of Image Processing with its applications, Components of Image processing system, Image Formation model. Image digitization process.

Image Enhancement:
Introduction of Image enhancement, Image enhancement techniques: Contrast intensification by Linear stretching, Non-Linear stretching, Exponential stretching, Noise cleaning or Smoothing by Image averaging, Image sharpening, Basic transformations in the frequency domain

Colour Image Processing:
Pseudo and False colouring, Image fusion. Colour Models: RGB, CMY, HSI

Image Compression:
Introduction, Lossy Compression techniques and Loss less image compression techniques, Huffman coding, Run Length Encoding, JPEG, Block Truncation compression.

Image Segmentation:
Characteristics of segmentation, detection of discontinuities, thresholding, pixel and region based segmentation methods.

Pattern Representation and Recognition:
Representation, Boundary Descriptors, Regional Descriptors

Pattern Recognition and classification: Patterns and Pattern Classes, Recognition based on decision theoretic methods, structural methods

Books and References:
2. Digital Image Processing and Pattern Recognition, Malay K. Pakhira, PHI
3. Arthur Weeks, Fundamentals of Electronic Image Processing, PHI
CMSM4431
Marks: 100
Mobile Communications (Elective)

Introduction: Advantages and disadvantages, evolution, special considerations for node mobility;

Wireless transmission: Frequency band for signal transmission, signal propagation, multiplexing, modulation, spread spectrum, cellular systems;

Medium Access Control: Motivation for a specialised MAC, SDMA, TDMA, FDMA, CDMA;

Telecommunication systems: GSM architecture and protocol suite in details;

Wireless LAN: Infrastructure and ad-hoc network, IEEE 802.11 – PCF, DCF, frame format, services (association, authentication, etc.), Bluetooth – different profiles, introduction to its protocol stacks;

Mobile Network Layer: Mobile IP, DHCP, Mobile Ad-hoc networks;

Mobile Transport Layer: mobility and effects on transport protocols; TCP performance on wireless links – possible improvement;

Management issues in mobile/wireless environment: Location determination & management, mobility management, power management;

Mobile/Wireless applications: WAP, WML, mobile file access;

Security: Introduction to special security issues in mobile/wireless environment, notion of WEP;

Books and References:
1. Jochen Schiller, Mobile Communication, Pearson Education
2. Stallings, Wireless Communication, Pearson Education

CMSM4432
Marks: 100
Data Mining and Data Warehousing (Elective)

Basic Concepts: Data Warehouse, Data Warehouse and On-line Transaction Processing System, Advantages and Drawbacks of Data Warehouse, Data Warehouse Architecture - Operational Data Source, Load Manager, Query Manager, Warehouse Manager, Detailed Data, Summarized Data, Archive/Backup Data, Metadata, End-User Access Tools, Data Warehouse Background Processes.

Data Marts: Basic concepts, Advantages and drawbacks of data mart, Components of data mart, Types of data mart.

Data Warehouse Design: Different views of designs, processes of design.

On-line Analytical Processing: Concepts, OLTP Vs OLAP, Multidimensional Data Model – Data Cube; OLAP Operations - Slicing, Dicing, Drill-Up, Drill-Down, Drill-Within, Drill-Across, Pivot; OLAP Tools – MOLAP, ROLAP, HOLAP.

Data Mining: Introduction to Data Mining, Architecture in a Data Mining System, KDD Vs Data Mining, Applications of Data Mining, Data Preprocessing

Mining Frequent Patterns and Association: Frequent Itemsets, Closed Itemsets, Association Rules, Market Basket Analysis, The Apriori Algorithm.

Classification and Clustering Algorithms: Classification, Prediction, Classification by Decision Tree Induction, Bayesian Classification, Cluster Analysis, Partitioning Methods for Clustering – K-Means, K-Medoids.

Books and References:
Object Oriented Technology (Elective)

- **Principles of Object Oriented Programming (OOP):** Basic concepts, Programming Paradigms, Benefits of OOP, Applications of OOP.

- **Introduction to Object Oriented Analysis and Design:** Best Practices in Software Development, OOSDLC, Requirements modeling, Business modeling, Component based development, Quality criteria for software products, Frameworks - OMT, OOD,OOSE, The Unified approach.

- **Rational Unified Process:** Basic Concepts, Process overview, Phases and Iterations – the Time Dimension; Static structure of the process, Core Workflows.

- **Unified Modeling Language:** History of UML, Building Blocks of UML, Modeling Concepts - Structural modeling, Behavioral modeling.

Books and References:

2. Rumbaugh, *Object Oriented Modelling and Design*, Pearson Education
3. Grady Booch, *Object Oriented Analysis and Design*