
An Introduction

to

Engineering Methods

Software Engineering Methods

We will define engineering methods, somewhat
loosely, as follows.

Definition 1 An Engineering Method is a set of ac-
tivities, notations, methods or mathematical tools
designed to measure, monitor and control a specific
set of system properties.

By a system property we will mean specific predi-
cates that hold, or should hold, of the system as a
whole. Whether or not the system meets specific
performance or reliability measures are good exam-
ples here.

Some properties such as whether or not a system is
Safe or Usable are not easy to quantify and must of-
ten be reduced to those that are quantifiable if they
are to be measured and monitored during develop-
ment.

Engineering Methods – 0

. . . And Now for a Walk in the
Quality Assurance Forrest

In this lecture we will do this by exploring three key
ideas:

(i) Quality and how do we break it down so that we
can measure, monitor and control “quality”;

(ii) Assurance, or how confident are we that the fi-
nal program meets our requirements and how
do we guarantee that the final program will meet
our requirements; and

(iii) Engineering Methods, or the idea that we can
employ certain techniques and tools to give us
confidence that we have met our system re-
quirements.

Engineering Methods – 1

Quality for Software Engineers

Ideally, for engineering we would like to be able
to monitor, measure, evaluate and control qual-
ity!. . . But what is quality?

Quality is considered simply too vague a concept to
“engineer”. For engineering purposes we need to
measure, monitor and control quality and so more
quantifiable notions of quality are required.

Engineering Methods – 2

Quality Models

Typically, a quality model is used to give a more pre-
cise and (where possible) measurable notion of soft-
ware quality.

Quality models typically decompose the concept of
quality into a hierarchy of characteristics each of
which contribute to the overall quality of a piece of
software.

Engineering Methods – 3

The Concept of Quality

Lets begin with a relatively abstract characterisation
of quality.

• satisfy explicit requirements, that is, it should be
correct, complete and consistent with respect to
explicit requirements;

• adhere to internal (organisational or project)
and external standards imposed on the project,
for example IEC61508 (safety), Rainbow Stan-
dards (US Security), IEEE standards, internal
company standards;

• conform to implicit quality requirements which
are requirements for performance, reliability, us-
ability, extendibility, safety and security and typ-
ically capture what we think of as the attributes
of quality.

Note: Some factors may require more attention than
others because of the problem domain, customer re-
quirements or business necessity.

Engineering Methods – 4

Quality According to ISO-9126

Next, we’ll break down quality to give more detailed Quality
Model. AN example is ISO-9126 where quality is characterised
by the following hierarchy of quality attributes.

Characteristics Sub-characteristics

Functionality Suitability
Accuracy
Interoperability
Security

Reliability Maturity
Fault Tolerance
Recoverability

Usability Understandability
Learnability
Operability
Attractiveness

Efficiency Time Behaviour
Resource Utilisation

Maintainability Analysability
Changeability
Stability
Testability

Portability Adaptability
Installability
Co-existence
Replaceability

ISO-9126 Quality Attributes and Their Sub- attributes.

Engineering Methods – 5

Quality Assurance

Can we guarantee that our program has ”quality”?

• It is difficult, if not impossible, to guarantee ab-
solutely that we have met all of our quality re-
quirements.

• Rather the aim is to provide a high level of
assurance—a high degree of confidence—that
the resulting system will meet the needs for
which it was built.

• Meeting this need means ensuring that the sys-
tem meets a range of requirements stemming
from the user and the operational environment.

• An important factor that distinguishes engineer-
ing from ad hoc development is the ability to ex-
ert control over the level of assurance achieved
in a project to suit the purpose of the project.

Engineering Methods – 6

Quality Assurance

In practice, exerting this kind of control over quality
and quality attributes requires that we build quality
and its attributes into the system starting at require-
ments stages.

All the evidence that we have points to a situation
where we cannot simply fix up our software post
hoc and add in quality!

Engineering Methods – 7

Which Engineering Methods?

Engineering methods are aimed at ”building in” key
properties or quality attributes into the software.

The engineering methods that we consider here are
those dealing with:

• Correctness, Completeness, Consistency which is what
we usually aim for as a minimum level of quality. A com-
bination of audits, technical reviews and execution based
testing is typically used to assure the three C’s.

• Software Reliability Engineering, is a set of activities and
analytical methods that relies on testing, and other meth-
ods to get data for assessing and predicting properties
such as mean time to failure or failures per unit time;

• Safety Engineering, which is a set of activities and analyt-
ical tools to build systems with the potential to accidently
kill or injure people.

• Performance Engineering, is a set of activities and analyt-
ical methods aimed building systems with specific timing
or resource usage requirements.

Engineering Methods – 8

Basics

While the various methods that we will study have
evolved separately there is some commonality be-
tween the methods and, apart from testing, this is
how we will approach the study of our engineering
methods.

Each method has:

• a set of activities that are to be performed during
various lifecycle phases;

• a supporting modelling theory for evaluating the
artifacts produced by the development process;
and

• guidelines and techniques for building systems
to meet the specific quality attributes or special
requirements.

Engineering Methods – 9

An Engineering Method for Reliability

A first example is reliability engineering.

Activities are given by Software Reliability Engi-
neering (SRE) methods:

• Setting up “system” and sub-system test and
measurement methods;

• Recording and interpreting results;

• Improving process and product according to
results.

Modelling Theory is based on reliability growth
models for hardware and software:

• Based on the theory of probability, Markov
Chains and Poisson and Binomial distribu-
tions; and

• Basic execution time and Poisson models.

Engineering Methods – 10

An Engineering Method for Reliability

Product guidelines and Reliability Techniques
is based on the fault-tolerant design.

• Understanding faults and how they can man-
ifest in the system including benign failures
and byzantine failures;

• Redundant designs such as Triple Mode
Redundancy and determining faults through
voting and byzantine agreement;

Engineering Methods – 11

An Engineering Method for Performance

A second example is performance engineering;

Activities are given by Software Performance En-
gineering (SPE) methods:

• Setting up “system” and sub-system test and
measurement methods;

• Recording and interpreting results;

• Improving process and product according to
results.

Modelling Theory is based on Execution graphs,
timing diagrams and timing variance.

Engineering Methods – 12

An Engineering Method for Performance

Product guidelines and Reliability Techniques
is still much more of a trial and error ap-
proach but the theory allows us to model
and improve architectures, designs and other
non-executable artifacts through a “best guess”
process.

Engineering Methods – 13

Safety

Safety is a little different because safety engineer-
ing currently relies heavily on process and the ability
to integrate a Safety Life-cycle with a Development
Life-cycle.

Activities are based on constantly assessing and
reassing artifacts for safety using a variety of
techniques.

Modelling Theory is based around various hazard
analyses and risk assessments.

Product guidelines and techniques typically go
back to the reliability and fault tolerance of the
safety related system functions.

Engineering Methods – 14

Testing

What can we test for?

• Correctness, Completeness and Consistency
using unit tests, integration tests and accep-
tance tests.

• α and β testing.

• Recovery testing – force the system to fail in var-
ious ways and then verify that correct recovery
occurs.

• Security testing – aims to test that the security
protections built into the system do indeed pro-
tect the system from attack.

• Performance testing – aims to assess the per-
formance of the system under normal or ab-
normal loads, perhaps by building up an oper-
ational profile of the system performance.

Engineering Methods – 15

Testing

In particular we will use testing methods for assuring
correctness, completeness and consistency, and for
measuring the reliability and performance aspects of
our systems.

Testing underlays most of what we will do and that
is why we will attack testing first.

Engineering Methods – 16

An Introduction

to

Software Testing

Software Testing?

Testing, at least in the context of these notes, means
executing a program in order to find failures - depar-
tures of the program behaviour from specifications
or intentions. In fact, that is all we can do with soft-
ware testing!

• We cannot prove that a program meets its spec-
ification or does its job by testing alone – there
are simply too many inputs and too many cases
to cover.

• Unless we undertake exhaustive testing, that is,
try every input possible on every path through
program, then we also cannot guarantee the ab-
sence of bugs by testing alone.

• BUT without testing a program we have no con-
fidence at all that the program will do its job on
the intended platform in the intended environ-
ment at all.

Software Testing – 17

Various Perspectives on Software Testing

• Establishing confidence that a program does what it
is supposed to do (W. Hetzel, Program Test Methods,
Prentice-Hall)

• The process of executing a program with the intent of find-
ing errors (G.J. Myers, The Art of Software Testing, John-
Wiley)

• The process of analysing a software item to detect the
difference between existing and required conditions (that
is, bugs) and to evaluate the features of the software item
(IEEE Standard for Software Test Documentation, IEEE
Std 829-1983)

• The process of operating a system or component under
specified conditions, observing or recording the results,
and making an evaluation of some aspect of the system
or component (IEEE Standard Glossary of Software En-
gineering Terminology, IEEE Std 610.12-1990)

Software Testing – 18

Our Perspective on Software Testing

From our perspective, software testing gives us an
important set of methods that can be used to assure
the quality of software systems.

Software testing means executing a program or its
components in order to assure:

(i) The correctness of software;

(ii) The performance of software under various con-
ditions;

(iii) The robustness of software, that is, its ability to
handle erroneous inputs and unanticipated con-
ditions;

(iv) The usability of software under various condi-
tions;

(v) The reliability, availability, survivability or other
dependability measures of software; or

(vi) Installability and other facets of a software re-
lease.

Software Testing – 19

Remarks on Software Testing

Before going further some remarks need to be
made.

(i) Testing is based on executing a program, or
its components. Therefore, testing can only be
done when some parts (at least) of the system
have been built.

(ii) Some authors include V&V activities such as
audits, technical reviews, inspections and walk-
throughs as part of testing.

We take the converse stance and view testing
as part of quality and its assurance.

Software Testing – 20

The Language of Failures, Faults, and Errors

• Failure: The inability of the system or a com-
ponent to perform its required functions within
specified performance requirements.

• Fault: An incorrect step, process, or data def-
inition in a computer program. Faults are the
source of failures – a fault in the program trig-
gers a failure under the right circumstances.

In normal language faults are usually referred to
as “errors” or “bugs”.

• Error: The difference between a computed, ob-
served, or measured value or condition and the
true, specified, or theoretically correct value or
condition.

Software Testing – 21

The Language of Failures, Faults and Errors

Consider the following simple program whose spec-
ification is that for any integer n, square(n) = n2 and
the following program:

int square(int x)

{

return x*2;

}

Executing square(3) results in a failure because
our specification demands that the computed an-
swer should be 9. The fault leading to failure oc-
curs in the statement return x*2 and the error
between computed results and specified results is
3.

Note: executing square(2) would not have re-
sulted in a failure.

Software Testing – 22

Experiencing Failures, Detecting Faults
Removing Faults

Observation In testing we can only ever detect fail-
ures! Our ability to find and remove faults in testing
is closely tied to our ability to detect failures.

We would normally undertake the following three
steps when testing and debugging the software
component.

• Detect system failures through testing;

• Determine the faults leading to those failures;
and

• Repair and remove the faults leading to the fail-
ures.

This process is itself error-prone. We must not only guard
against errors that can be made at steps (2) and (3) but also
note that new faults can be introduced at step (3). Conse-
quently, the process is also subject to quality assurance activi-
ties.

Software Testing – 23

Programs

We will adopt the following view of programs.

Definition 2 A program P is a relation between inputs
and outputs.

The relation can be deterministic:

• For every input x there exists a unique output y
such that P executed with input x computes y.

The relation can be non-deterministic as can be the
case in programs with multiple executing threads:

• For every input x there exists a number of pos-
sible outputs y such that P executed with input x
computes y.

We will deal only with deterministic programs.

Software Testing – 24

Programs

Programs may terminate!

• In the case of testing a program that terminates
we would expect that P executed on the input
x would terminate, and deliver an output y and
that y meets the specification of P.

Software Testing – 25

Programs

Programs may not terminate!

• A classic example of a non-terminating program
is a control loop for an interactive program or an
embedded system. These loops must execute
until the system is shutdown.

• A non-terminating program may:

(i) generate observable outputs, in which case
we need to establish that the required se-
quences of outputs are produced; or

(ii) it may not generate any observable outputs
in which case we are interested in the
sequence of internal state changes that
the component undergoes. This is better
thought of in terms of state machines.

(see Object Oriented Testing later).

Software Testing – 26

Inputs

We will need to think carefully about inputs. Inputs
to the program or component need not come from
program parameters or read statements alone. They
can come from all of the following sources.

• Inputs passed in as parameters;

• Entered by the user via the interface;

• Read from files;

• Constants and precomputed values;

• Aspects of the global system state including:

– Variables and data structures shared between pro-
grams or components;

– Operating system variables and data structures, for
example, the state of the scheduler or the process
stack;

– The state of files in the file system;

– Saved data from interrupts and interrupt handlers.

Software Testing – 27

Inputs

In general, the inputs to a program or a program
component are stored in program variables. A pro-
gram variable may be:

• A variable declared in a program as in the
C declarations

int base;

char s[];

Remark 3 Variables that are inputs to a component under test

(i) can be defined in some enclosing scope, for example, they
are declared global to the program

(ii) can be structured data such as linked lists, files or trees,
as well as atomic data such as integers and floating point
numbers.

Software Testing – 28

Inputs

• A reference or a value parameter as in the C function
declaration

int P(int *power, int base) {
... do stuff ...

}

• Constants declared in an enclosing scope of the compo-
nent, for example,

#define PI 3.14159

double circumference(double radius)
{

return 2*PI*radius;
}

• Resulting from a read statement or similar interaction with
the environment, for example,

scanf(‘‘%d\n’’, x);

Software Testing – 29

Input Domains

The input domain to a program is the set of values
that are accepted by the program as inputs. Note
that this does not mean that all of the values in the
input domain are valid inputs.

Input domains are derived from two main sources.

(i) The specification of the program – recall our
view of the program as relation between the set
of all inputs and the set of outputs.

(ii) Each variable that is an input to the program un-
der test has a set of values associated with it,
that is, the values associated with the data type
of the variable.

Software Testing – 30

Input Domains

Normally the values to test the program are drawn
from the input domain of the program.

We say normally because for some cases the inputs
to the program may require:

• sequences of values in the input domain, for example,
when testing object oriented programs using state ma-
chines a sequence of values may be needed to force a
specific state of an object; or

• sets of values that force a specific condition, for example,
taking a large data set to test through-put in a program.

Software Testing – 31

Outputs

The Program is Deterministic

Returns an explicit
value

The specification determines the
unique value returned by the pro-
gram.

Does not return an
explicit value

The specification determines the
unique final state of the program.

The Program is Non-deterministic

Returns an explicit
value

The specification determines a set
of acceptable values that can be re-
turned by the program.

Does not return an
explicit value

The specification determines a set
of acceptable values that can be re-
turned by the program.

Software Testing – 32

Test Cases

Ultimately, testing comes down to the selecting and
executing Test Cases. A test case for a specific com-
ponent consists of three essential pieces of informa-
tion:

(i) A set of test inputs;

(ii) The expected results when the inputs are exe-
cuted; and

(iii) The execution conditions or environments in
which the inputs are to be executed.

Software Testing – 33

Specification Based Testing?

Testing uses the system, program or component
specification to determine the expected outputs
when choosing test cases.

But there are many occasions when testing is re-
quired for programs with no clear specification. In
this case, the job of the tester is to gather as much
information about the expected behaviour of the pro-
gram as possible using:

• advertising;

• user manuals; and

• documentation, design notes or other develop-
ment notes that are available.

Software Testing – 34

Two Key Testing Strategies

Both of the following test case selection strategies
are specification based testing strategies.

Black-box Testing where test cases are derived
from the functional specification of the system;
and

White-box Testing where test cases are derived
from the internal design specifications or actual
code (sometimes referred to as Glass-box).

Software Testing – 35

Black Box Testing

Black box test cases are generated from the func-
tional specification of the system without reference
to the internal structure of the system.

• The component, program, or system, is consid-
ered as a Black Box.

• Testing is only concerned with functionality and
features of the system but not its internal oper-
ations.

• The internal operations of the system may not
be known at the time of designing test cases.

Software Testing – 36

Features of Black Box Testing

Advantages

1. The design of test cases is independent of the
detailed design or the software code.

Consequently, generating the test cases and
coding the system can be done in parallel.

2. Black box testing methods can test for missing
functions, that is, functions specified but not im-
plemented.

Disadvantages

3. Black box testing cannot test for functions, that
is, functions implemented but not specified.

Software Testing – 37

White Box Testing

White box test cases are generated from the spec-
ification of the component and the internal design
or code of the system. Of course this means that
testers need access to the most recent design doc-
uments.

Advantages

1. White box testing can test extra functions and
can test for extra functions.

Disadvantages

2. White box testing methods cannot test for miss-
ing functions.

3. The selection of test cases can only be carried
out after the coding the module(s) to be tested.

Software Testing – 38

Different Levels of Testing:
The “V” Model

There are a number of different types and levels of
testing. The following V model is often used to show
where different forms of testing fit into the overall
software engineering process.

Concept
Phase

Requirements
Phase

Architectural
Design

Detailed Design
Phase

Implementation

Unit Testing

Integration
Testing

System
Testing

Acceptance
Testing

Software Testing – 39

Unit Testing

Unit testing is the process of testing the individ-
ual components or collections of components, that
is, methods, object classes, subprograms or proce-
dures, of a program.

• When unit testing, the “input domains” of the
units are consider1d and the remainder of the
system is ignored.

• Units tests are usually, but not always, tested
against detailed design specifications.

• Unit testing typically involves the construction of
test stubs or drivers in order to simulate a unit’s
environment.

• Unit tests can be Black Box or White Box (see
below).

Software Testing – 40

Integration Testing

Integration testing deals with testing collections of
components that have each bee tested prior to in-
tegration. The aim of integration testing is to test
the interfaces and communication between compo-
nents.

• Typically, the focus is on the subset of the input domain to
the integrated component that will exercise the interfaces
and communication between components.

• Performance and reliability testing can also be performed
at this level.

• Integration testing is often performed against various
stages of intermediate design as well as the software ar-
chitecture.

• Some examples of interfaces between components that
are part of an integration test include:

– Specific sequences of method or function calls to es-
tablish a specific state within a component;

– Messages, packets and event flows between compo-
nents;

– Data flows between components and components
and external data-bases, networks and files.

• Again, stubs and drivers are often required to simulate
an integrated component’s environment and provide test
inputs and record outputs.

Software Testing – 41

System and Acceptance Testing

System testing involves testing the entire integrated
set of components that make up a deliverable. Sys-
tem testing is usually done against system require-
ments specifications.

Acceptance testing is done by the clients or procur-
ers of the software. It is the testing done by a client
or some other agency to determine if the software,
or software component should be accepted or not.

Software Testing – 42

Test Planning and Execution

As always a systematic approach to testing gives us
the confidence that our system goals are being met.

A Testing Process for a specific level of testing (Sys-
tem, Integration, Unit) includes the following infor-
mation.

1. Define the testing objectives;

2. Design test cases to meet those objectives;

3. Generate the test cases using testing strategies that meet
your testing objectives;

4. Determine the expected output for each of the test cases;

5. Execute the test cases;

6. Analyse the test results i.e., compare the actual output
with the expected output;

Normally testing continues until some Test Coverage goals or
some Dependability goals have been met.

Software Testing – 43

Test Execution – Instrumentation

It can be difficult for test cases to create the condi-
tions necessary for comprehensively testing a pro-
gram or system.

You may need to ask development team to add test-
points to the system.

A test-point is a permanent point in the
product that enables a tester to:

• externally interrogate and set the value
of a variable;

• perform one or more specific actions, as
indicated by the value of the variable; or

• does nothing if the variable is set to its
default value.

Software Testing – 44

Test Execution – Instrumentation

Examples:

• To halt the system for testing recovery proce-
dures;

• To introduce timing delays;

• To invoke a procedure supplied by the tester;
and

• To generate an input/output error condition in
a channel, controller or device to test recovery
procedures.

Software Testing – 45

The Key Laws of Testing

Knuth’s Law Testing can only be used to show the
presence of errors, but never the absence or er-
rors.

Hetzel-Myers Law A combination of different V&V
methods out-performs and single method alone.

Weinberg’s Law A developer is unsuited to test
their own code.

Pareto-Zipf principal Approximately 80% of the er-
rors are found in 20% of the code.

Gutjar’s Hypothesis Partition testing, that is, meth-
ods that partition the input domain or the pro-
gram and test according to those partitions, is
better than random testing.

Weyuker’s Hypothesis The adequacy of a test
suite for coverage criterion can only be defined
intuitively.

Software Testing – 46

References

1. G.J. Myers, The Art of Software Testing, John
Wiley & Sons, 1979.

2. B. Beizer, Software Testing Techniques, 2nd
ed., van Nostrand Reinhold, 1990.

3. E. Kit, Software Testing in the Real World,
Addison-Wesley, 1995.

4. A. Endres and D. Rombach, A Handbook of
Software and Systems Engineering, Addison-
Wesley, 2003.

5. J. A. Whittaker, How to Break Software: A Prac-
tical Guide to Testing, Addison-Wesley, 2002.

Software Testing – 47

Black Box Testing

or

Functional Testing
Strategies

Basics

Black box testing considers the program as. . .
. . . a Black Box.

Testers are only concerned with the functions and
features of the program as given by the specifica-
tion, but are not concerned with the program’s inter-
nal operations.

Test cases are selected based on the specification
of the program.

The input domain is derived from the specification of
the program.

Software Testing – 48

Basics

Common Black Box Specification Based Testing
strategies include the following.

• Random testing

• Specification based methods, that is, methods
that rely on an analysis of the specification to
determine test cases;

1. Equivalence Partitioning

2. Boundary-value Analysis

3. Error Guessing

Software Testing – 49

Random Testing

In random testing approaches the data used for test
cases is randomly selected from the input domain of
the program.

In this case, we do not have the overhead of having
to analyse the input or output space of the program.
However, we do need a good random number gen-
erator to help select “points” in the input space.

For a discussion of good random number generator,
see, e.g., D.E. Knuth, The Art of Computer Program-
ming, vol. 2: Semi-numerical Algorithms, 2nd Ed.,
Addison Wesley, 1981.

Software Testing – 50

Random Testing

One major application of random testing is to provide
data for estimating software reliability. Test cases
are randomly generated according to an Operational
Profile, and data such as failure times are recorded.
The data obtained from random testing can then be
used to estimate reliability. No other testing method
can be used in this way to estimate reliability.

The Operational Profile of a program in the input do-
main is the probability distribution of selecting points
in the input domain in the case when the program,
or system, is being used in actual operation.

However, any reliability predictions are incorrect if
the operational profile is incorrect.

Additional Reference: R. Hamlet, “Random Test-
ing”, In Encyclopedia of Software Engineering, J.
Marciniak ed., pp. 970–978, Wiley, 1994.

Software Testing – 51

Specification Based Testing

The alternative to random testing is to generate test
cases based on an analysis of the software/system
specification.

Specifications

We will make the following distinctions in this sub-
ject.

• Informal – typically a combination of everyday language
and diagrams;

• Rigorous – typically using semi-formal graphical notations
such as UML, OMT, OMG notation, Structured Analysis
and Design notation (for example, Data-flow diagrams or
structure charts);

• Formal methods – typically using mathematical notation
or notations with a sound mathematical underpinning
such as Z, VDM, B, CCS, CSP, LOTOS, Algebraic and
Axiomatic methods.

In this subject we will often use Informal and Rig-
orous specification methods as the basis for testing,
but sometimes we will logic and set theory and these
are Formal.

Software Testing – 52

Equivalence Partitioning

The intuition behind equivalence partitioning is to
divide the input space of the program into classes
(sets really!) of related test cases. The sets are
called as Equivalence Classes.

• Each equivalence class represents a Condition
on the input, for example, the set of valid input
data or the set of invalid input data.

• A test case taken from an equivalence class is
representative of all of the test cases taken from
that class.

• Equivalence partitioning significantly reduces
the number of input condition to be tested by
identifying classes of conditions that are equiv-
alent to many other conditions.

The key question is – What is an equivalence class?

Software Testing – 53

Equivalence Partitioning
Input Conditions

Definition 4 An Input Condition is a predicate over
the input domain of a program that specifies the set
of valid inputs to the program.

Input conditions are typically used to partition the in-
put domain into equivalence classes for the purpose
of selecting inputs. Consider a modified version of
the specification of the square program for returning
unsigned integer results on 32 bit machines:

∀ x ∈ {0, . . . , 65535} • square(x) = x ∗ x.

• The input domain is the set of unsigned ma-
chine integers; and

• The sole input condition is x ∈ {0, . . . , 65535}.

Software Testing – 54

Equivalence Partitioning

1. Equivalence partitioning is a systematic method
for identifying sets of interesting classes of input
conditions to be tested.

2. Each class is representative of (or covers) a
large set of other possible tests.

3. Equivalence partitioning does NOT test combi-
nations of input conditions.

We really expect the program or component to “be-
have” in much the same way for all elements of an
equivalence class. Instead of writing test cases for
all elements of the class, we can pick one represen-
tative test-case and infer the properties of the class
from the test-case.

Care is needed here in picking equivalence classes
- we must ensure that all members of the class be-
have the same so that our inferences are valid.

Software Testing – 55

Equivalence Partitioning

Intuitively equivalence partitioning relies on the fol-
lowing idea.

Input Space

Equivalence
Class

Representaive
for the class

Software Testing – 56

Equivalence Partitioning

Method:

• The aim is to minimise the number of test cases
required to cover the input domain. There are
two distinct steps:

1. Identify the equivalence classes (ECs);

2. Identify the test cases.

Software Testing – 57

Identifying Equivalence Classes

Guidelines

1. If an input condition specifies a range of values,
identify one valid equivalence class and two in-
valid equivalence classes.

Example 5 If we are given the range of val-
ues 1 . . . 99 then we require three equivalence
classes:

• The valid equivalence class {1, . . . , 99}; and

• Two invalid equivalence classes {x | x < 1}

and {x | x > 99}.

Software Testing – 58

Identifying Equivalence Classes

2. If an input condition specifies a set of input val-
ues and each is handled differently, identify a
valid equivalence class for each element of the
set and one invalid equivalence class.

Example 6 If the input is selected from a set of
say N items then we require N + 1 equivalence
classes:

• One valid equivalence class for each ele-
ment of the set {M1}, . . . , {MN}; and

• One invalid equivalence class for elements
outside the set {x | x 6∈ {M1, . . . , MN}}.

3. If there is reason to believe that the program
handles each valid input differently, then define
one valid EC per valid input.

Example 7 If the input is from a menu then
we define one valid equivalence class for each
menu item.

Software Testing – 59

Identifying Equivalence Classes

4. If the input specifies the number (say N) of valid
inputs, define one valid equivalence class for
the correct number of inputs and two invalid
equivalence classes – one for zero values, and
one for values > N.

5. If an input condition specifies a “must be” situ-
ation, identify one valid equivalence class and
one invalid equivalence class.

Example 8 The first character of an input must
be a numeric character then we require two
equivalence classes – a valid class

{s | the first character of s is a numeric}

and one invalid class

{s | the first character of s is not a numeric}

6. If elements in an equivalence class are handled
differently by the program, then split the equiva-
lence class into smaller equivalence classes.

Software Testing – 60

Identifying Test Cases

1. Assign a unique number to each EC.

2. while all valid ECs have not been
covered by test cases do

3. write a new test case covering as many
of the uncovered ECs as possible.

4. while all invalid ECs have not been
covered by test cases do

5. write a test case that covers one,
and only one, of the uncovered invalid ECs.

Software Testing – 61

Equivalence Partitioning: Example 1

Consider the following informal specification for the
Triangle Classification Program.

(i) The program reads in three costive integer val-
ues from the standard input.

(ii) The three values are interpreted as represent-
ing the lengths of the sides of a triangle.

(iii) The program then prints a message to the stan-
dard output that states whether the triangle, if
it can be formed, is scalene, isosceles, equilat-
eral, or right-angled.

Software Testing – 62

Equivalence Partitioning: Example 1

• What is the input domain for the program?
The possibilities include:

– the set of all possible input strings - we are
testing for robustness and we want to know
if incorrect strings are properly rejected;

– the set of all possible machine integers, both
positive and negative; or

– the set of all possible positive integers.

• What are the input conditions?
For the specification of the triangle classification
program (in the slide above) we have the case of
four valid types of input and (according to case
(2) above) so we need four valid equivalences
classes, one for each type of triangle, and one
invalid class for a non-triangle.

Note that we are using clause 6. to determine these
equivalence classes.

Software Testing – 63

Equivalence Partitioning: Example 1

The resulting equivalence classes appear in the fol-
lowing table.

Equivalence class Test Case
scalene triangle {(3, 5, 7), . . . }
isosceles triangle {(2, 3, 3), . . . }
equilateral triangle {(7, 7, 7), . . . }
right-angled triangle {(3, 4, 5), . . . }
non-triangle {(1, 1, 3), . . . }
non-positive input {(-1, 0, 3), (-2,-3,-3),. . . }

Software Testing – 64

Equivalence Partitioning: Example 2

Next consider a more complex example where we Black-Box
test a Ring Buffer ADT. The informal specification is as follows.

1. The ring buffer consists of the following operations to
store and retrieve messages in a distributed system.

(i) The initBuffer operation takes no arguments and cre-
ates a new empty ring buffer.

(ii) The writeBuffer operation accepts a ring buffer and
a message and updates the buffer with the message
inserted at the next available writing slot.

(iii) The readBuffer operation takes a ring buffer and re-
turns the element in the current writing position.

2. The ring buffer must be large enough to store up to 100
messages.

3. The reader and the writer must not access the same slot
simultaneously. The reader must always read from one or
more slots behind the slot currently being written to.

4. The key condition that must be maintained is that write-
Buffer must not write to a slot that has not been read.
The free slots in the ring buffer are those after the current
writing slot but before the slot currently being read.

Read
Position

Write
Position

Free Slots Free Slots

Software Testing – 65

Equivalence Partitioning: Example 2

int writeBuffer(struct Buffer *rb,
struct Message *msg)

{
int rd, wr, fs;

rd = rb -> read;
wr = rb -> write;
fs = rb -> freeSlots;

if (fs == 0)
return -1;

else {
rb -> contents[wr] = *msg;
rb -> write = (wr + 1) % BUFFER_SIZE;
rb -> freeSlots--;

return 1;
};

};

Software Testing – 66

Equivalence Partitioning: Example 2

#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/ipc.h>

#include "message.h"

#define BUFFER_SIZE 100

struct Buffer
{struct Message contents[BUFFER_SIZE];

int read;
int write;
int freeSlots;
int status;

};

Software Testing – 67

Equivalence Partitioning: Example 2

Here is one way of attacking the testing of write-
Buffer using black box methods.

Step 1 Let the set of ring buffers be denoted by RB and the
set of messages by M. From clause 1(i) the input domain
to the writeBuffer is RB ×M.

Step 2 We use the detailed design (code) to determine that
RB is actually a product of an array content of up to
100 messages, an integer read for the reading position,
and an integer write for the writing position, an integer
freeSlots giving the number of free slots and an integer
status.

Let the set of arrays of messages be A.We conclude
that a possible input domain is

A× int × int × int × int.

Software Testing – 68

Equivalence Partitioning: Example 2

The input conditions so far are:

• for any input array a ∈ A, 0 ≤ length(A) ≤ 100;

• for any input array read 6= write;

• for any input array 0 ≤ freeSlots ≤ 100 and
100 − (write− read mod 100) = freeSlots;

Now combine the input conditions onto the fields
(technically “coordinates”) of set RB of ring buffers.

Software Testing – 69

Equivalence Partitioning: Example 2

The resulting equivalence classes are as follows.

1. A valid equivalence class with

EC1 = { rb | length(rb.contents) ≤ 100 ∧
rb.read 6= rb.write ∧
rb.freeSlots = 100 − fs}

where fs = (rb.read − rb.write mod 100).

2. Invalid equivalence classes are (one for each in-
put condition):

(i) EC2 = { rb | length(rb.contents) > 100 ∧
rb.read 6= rb.write ∧
rb.freeSlots = 100 − fs}

(ii) EC3 = { rb | length(rb.contents) ≤ 100 ∧
rb.read = rb.write ∧
rb.freeSlots = 100 − fs}

(iii) EC4 = { rb | length(rb.contents) ≤ 100 ∧
rb.read 6= rb.write ∧
rb.freeSlots 6= 100 − fs}

Exercise 9 What will the test cases be?

Software Testing – 70

Boundary-value Analysis

The intuition in Boundary Value Analysis is to select
test cases to exercise the boundary conditions of a
program and to see how well the program handles
the boundary conditions

Definition 10 Boundary Conditions are those sit-
uations that are directly on, above, and beneath
the edges of input equivalence classes and output
equivalence classes.

In boundary value analysis, test cases that explore
the boundary conditions have a more important role
that test cases that do not.

Software Testing – 71

Boundary-value Analysis vs
Equivalence Partitioning

Boundary value analysis is both a refinement of
equivalence partitioning and a variant of equiva-
lence partitioning.

• Boundary-value analysis explores situations on
and around the edges of the equivalence parti-
tioning – boundaries are always a good place to
look for defects (faults or failures).

• Boundary-value analysis requires one or more
test cases be selected from the edge of the
equivalence class or close to the edge of the
equivalence class whereas equivalence parti-
tioning requires that any element in the equiv-
alence class will do.

• Boundary-value analysis also requires that test
cases be derived from the output conditions and
this is different to equivalence partitioning where
only the input space is considered.

Software Testing – 72

Boundary-value Analysis Guidelines

1. If an input condition specifies a range of values,
then construct valid test cases for the ends of
the range, and invalid input test cases for situa-
tions just beyond the ends of the range.

2. If an input condition specifies a number of val-
ues, construct test cases for the minimum and
maximum number of values and one beneath
and beyond these values.

3. If an output condition specifies a range of val-
ues, then construct valid test cases for the ends
of the output range, and invalid input test cases
for situations just beyond the ends of the output
range.

4. If an output condition specifies a number of val-
ues, construct test cases for the minimum and
maximum number of values and one beneath
and beyond these values.

Software Testing – 73

Boundary-value Analysis Guidelines

5. If the input or output of a program is an ordered
set (e.g., a sequential file, linear list, table), fo-
cus attention on the first and last elements of
the set.

6. Use your intelligence to search for other bound-
ary conditions.

Software Testing – 74

Boundary-value Analysis: Remarks

• Boundary value is not as simple as it sounds –
boundary conditions may be subtle and difficult
to identify;

• Does NOT test combinations of input conditions.

Software Testing – 75

Boundary Value Analysis: Example 1

Now lets, change the specification of the triangle
classification program as follows.

(i) The program reads in three positive floating
point numbers from the standard input.

(ii) The three values are interpreted as represent-
ing the lengths of the sides of a triangle.

(iii) The program then prints a message to the stan-
dard output that states whether the triangle, if
it can be formed, is scalene, isosceles, equilat-
eral, or right-angled.

Software Testing – 76

Boundary-value Analysis: Example 1

We have the same equivalence classes as identified
above. In addition we now have the following possi-
ble boundary conditions.

1. Given sides (A, B, C) for a scalene triangle the sum of any
two sides is greater than the third and so we have bound-
ary conditions A + B > C, B + C > A and A + C > B. For
the A + B > C case we can explore the boundary using
the following test cases.

(1, 2, 3), (1, 2, 2.999), (1, 2, 3.001), . . .

2. Given sides (A, B, C) for a isosceles triangle two sides
must be equal and so we have boundary conditions A =
B, B = C or A = C. For the A = C case we can explore
this boundary using the following test cases.

(2, 2, 3), (2, 1.999, 3), (2, 2.001, 3), . . .

3. Continuing in the same way for an equilateral triangle the
sides must all be of equal length and we have only one
boundary where A = B = C and we can explore this
boundary using the following test cases.

(3, 3, 3), (3, 2.999, 3), (3, 3.001, 3), . . .

Software Testing – 77

Boundary-value Analysis

4. For right-angled triangles we must have A2 + B2 = C2 and
this gives us a boundary which can be explored using the
following test cases.

(3, 4, 5), (3, 4, 4, 999), (3, 4, 5.001), . . .

5. For non-triangles we have similar boundaries to those
above.

(1, 2, 3), (1, 2, 2.999), (1, 2, 3.001), . . .

6. For non-positive input we have

(0, 1, 2), (−0.001, 1, 2), (0.001, 1, 2), . . .

Software Testing – 78

Boundary Value Analysis: Example 2

Consider the writeBuffer example above and recall
the equivalence classes that we derived earlier.

The main boundaries occur at:

• rb.read = rb.write − 1mod100

• length(rb) = 100

Read
Position

Write
Position

Read
Position

Write
Position

Software Testing – 79

Error Guessing Approaches

• Error guessing is an ad hoc approach based on
intuition and experience.

• Identify test cases that are considered likely to
expose errors.

• Make a list of possible errors or error-prone sit-
uations and then develop test cases based on
the list.

• The idea is to document common error-prone
or error-causing situations and create a defect
history. We use the defect history to derive test
cases for new programs or systems.

Examples include test cases for empty or null lists
and strings, zero instances/occurrences, blanks or
null characters in strings, and negative numbers.

Software Testing – 80

White Box
or

Structural Testing
Strategies

White Box Testing Strategies

In white box testing the aim is to use the structure
of the code to select test cases. Doing this gives
us a range of methods that can be used to uncover
errors.

• Static Analysis - Most specifically data flow
analysis.

• Coverage Based Testing - Selecting test cases
based on various criteria for “covering” the code:

(i) Path coverage;

(ii) Branch coverage;

(iii) Condition coverage;

(iv) Statement coverage;

• Domain Based Testing

Software Data-flow Analysis – 81

Control Flow Graphs

First we need Control Flow Graphs (CFG).

A Control Flow Graph is a graphical representation
of the control structure of a program.

Note the control flow graph of a module can be re-
stricted to have one entry node and one exit node.
Put another way, the control flow graph of a program
captures the various ways in which a program can
execute.

For differences between control flow graph and flowchart, see

[Beizer, 1990, p.63]

Software Data-flow Analysis – 82

Control Flow Graphs

• A node in a CFG represents a program state-
ment;

• An edge in the CFG represents the ability of a
program to flow from its current statement to the
statement at the other end of the edge;

• If an edge is associated with a conditional
statement, label the edge with the conditional’s
value, either True or False.

In the sequel we will represent statements by square
boxes and branches by diamond boxes.

Software Data-flow Analysis – 83

Control Flow Graph: Example

int power(int base, int n)

{

int power, i;

power = 1;

for (i = 1; i <= n; i ++)

power = base * power;

return power;

}

Software Data-flow Analysis – 84

Control Flow Graph: Example

The control graph for the power function appears be-
low.

int power, i;

power = 1

int x, int y

i = 1

i <= n

return power

power =
base * power

i = i + 1

Software Data-flow Analysis – 85

Control Flow Graphs: Definitions

• An Execution Path (or, just path) is a sequence of nodes
in the control flow graph that starts at the entry node and
ends at the exit node.

• A Branch (or,Decision) is a point in a program where the
control flow can diverge. For example, if-then-else
statements and switch statements typically cause
branches in the control flow graph.

In the control flow graph branches are represented by a
node node with two or more edges that exiting that node.

• A Condition is a simple predicate or simple relational ex-
pression occurring within a branch. When the in the con-
ditions in a branch are given certain values, determine
which path execution follows in the control flow graph.

For example, the branch given by

if ((a > 1)&&(b == 0))

consists of the conjunction of two conditions (a ¿ 1) and
(b == 0).

• A Feasible Path is a path where there is a test case in the
input domain that can exercise the path. The converse is
an Infeasible Path which is a path that is not feasible.

Software Testing – 86

Static Analysis: Data Flow

The aim of data flow analysis is to provide informa-
tion about the creation and use of data definitions in
a program.

Certain patterns of data usage can reveal faults in
the program. Further, data-flow analysis can is au-
tomatable and provides good indicators of program
faults. In data flow analysis we look for data flow
anomalies:

Data-flow anomalies: illogical or useless
sequence of data object state changes.

Data flow anomalies indicate the places where data
related errors may be present.

Software Data-flow Analysis – 87

Data Flow Analysis Concepts

We begin by letting P be the program or component
under test and CFG(P) its control flow graph. We can
then determine the following actions on a variable X

within the control flow graph.

Define (d) The variable X is defined when it is given
(assigned) a value;

Reference (r) The variable X is referenced. It can
either be referenced as part of a computation (c-
reference) or as part of a predicate or condition
(p-reference);

Undefine (u) The variable X looses its value or its
value becomes unknown or uncertain.

Software Data-flow Analysis – 88

Data Flow Anomalies

The next step is to identify anomalies that can occur
when P uses variables. The anomalies are labelled
according to the order in which P defines, references
or undefines the variables.

u-r anomaly indicates that an undefined variable is
referenced;

d-u anomaly indicates that a defined variable has
not been referenced before it becomes unde-
fined.

d-d anomaly indicates that the same variable is de-
fined twice causing a hole in the scope of the
first defined occurrence of the variable.

u-u anomaly indicates that the same variable has
been undefined twice.

Software Data-flow Analysis – 89

Data Flow Analysis: Example

Consider the following program for removing c char-
acters from a string s.

/* Squeeze: delete all c from s */

void squeeze(char s[], int c)

{

int i, j;

for (i = 0; s[i] != ’\0’; i++)

if (s[i] != c)

s[j++] = s[i];

s[j] = ’\0’;

}

From The C Programming Language by Kernigan and Ritchie

Software Data-flow Analysis – 90

Data Flow Analysis: Example

int i,j;

i = 0

s[i] != ‘\0‘

s[i] != c s[j] = s[i]

j++

s[j] = ’\0’

i++

Start

End

A

B

C D

E

F

G

H

True

False

True

False

Software Testing – 91

Data Flow Analysis: Example

In this example the component under test is
Squeeze and the variables of interest are i, j, s and
c.

Examining the path (A, B, C, E, F, G) we see that j
has two u-r anomalies and another u-r anomaly on
the path (A, B, C, D).

Software Data-flow Analysis – 92

Data Flow Analysis: Example

If we change Squeeze as follows:

/* Squeeze: delete all c from s */

void squeeze(char s[], int c)

{

int i, j;

for (i = j = 0; s[i] != ’\0’; i++)

if (s[i] != c)

s[i++] = s[i];

s[i] = ’\0’;

}

we create a number of d-u anomalies.

Exercise 11 What paths on the control flow graph
give rise to the d-u anomalies.

Software Data-flow Analysis – 93

Data Flow Analysis

More generally what types of faults can data flow
analysis detect? Typically we can detect common
types of programming errors.

• Typing errors

• Uninitialised variables

• Misspelling of names

• Misplacing of statements

• Incorrect parameters

• Incorrect pointer references

Software Data-flow Analysis – 94

Data Flow Analysis Approaches

Static Data Flow Analysis

• Static data flow analysis is done it without exe-
cuting the code – it is based purely on the struc-
ture of the program;

• It can be a pen and paper approach or done with
tools that examine the structure of a program.

Dynamic Data Flow Analysis

• Instrument the program by inserting additional
statements into the program so that information
about variables gathered.

• The desired information is obtained by execut-
ing the instrumented program for a properly
chosen set of input data.

Software Data-flow Analysis – 95

Static Data Flow Analysis

Method:

• Traverse a program’s paths and build up ”path
expressions”:

• Path expressions describe the sequence of ac-
tions taken on a variable when the program is
executed along the path;

• We detect the presence of data flow anoma-
lies by examining the constituent components of
path expressions.

Software Data-flow Analysis – 96

Static Data Flow Analysis

An example of Static Data Flow Analysis.

1. read (a, b);
2. c = a + b;
3. a = 0;
4. if (c < 2)
5. d = 1;
6. else
7. {

8. if (b < 2)
9. a = 2;
10. else
11. d = 3;
12. }

Consider the variable a on the False-True path. The
variable a is defined on line 1, referenced on line 2,
defined on line 3, and defined again on line 9: i.e.
we have d,r,d,d on this path and a d-d anomaly.

Software Data-flow Analysis – 97

Static Data Flow Analysis

read(a,b)

 c=a+b

 a = 0

c<2 d = 1

b<2 a = 2

 d = 3

True

False

True

False

A

B

C

D

E

F

G

H

Software Data-flow Analysis – 98

Dynamic Data Flow Analysis

One method of dynamic data flow analysis uses
Finite State Automatons (FSA). For each program
variable we create a FSA with the following states:

State Semantics
U The variable is undefined;
D The variable is defined;
R The variable is defined and ref-

erenced;
A An anomaly has occurred.

The transitions for the FSA are:

Event Semantics
undefine Undefine the variable;
define Define the variable;
reference Make a reference to the variable;

Software Testing – 99

Dynamic Data Flow Analysis

The Finite State Automaton for each variable looks as follows.

U

D

A

R

define

reference

reference

undefine

reference

define

undefine

• When we enter the A state, we stay there. This makes
sense since we do not know what condition to reset the
variable to if we do not know the exact condition that
caused the anomaly. To continue execution we have
some options:

(i) Abort execution after discovering an error to save ex-
ecution time.

(ii) Reset to a live state such as R after an anomaly and
continue.

(iii) Adopt a more complex state diagram.

• Using the FSA above we do not need to create control
paths explicitly. We just need to track the state of each
variable in order to infer data flow anomalies.

Software Testing – 100

Issues in Data Flow Analysis

Data Flow of Array Elements
To do data flow analysis for array elements we need
to take into account the assignments that can occur
between array elements.

• If the array index is a variable or arithmetic ex-
pression then we do not know which “l-value”
we are referencing.

• The calculation of array indexes is a run-time
property which complicates static analysis.

• To simplify, static analysis sometimes treats all
elements of of an array as if they were a single
variable.

This is NOT ideal!

Software Testing – 101

Data Flow Analysis

Data Flow Analysis of Array Elements

temp = a[j];

a[j] = a[k];

a[k] = temp;

The situation above does not cause an anomaly if
j!=k, but it does cause and anomaly if j==k. If we
treat the array as a single variable, we get a false
alarm – a d-d anomaly on the final two lines.

Software Data-flow Analysis – 102

Data Flow Analysis

Data Flow Analysis of Array Elements

i = 1;

while (i <= 10)

{

a[1] = a[i+1];

// Should be ’a[i] = a[i+1];’

i = i+1;

}

In this case, by treating the array elements as a
single element we will not detect a (d-d) data flow
anomaly.

So, it is desirable to treat array elements separately.
Determining array indices statically on paper is dif-
ficult, however, doing it dynamically by program in-
strumentation is not so hard.

Software Data-flow Analysis – 103

Static Data Flow Analysis

 i = 1

i <= 10 a[1] = a[i+1]
(a [d] = a [r])

 i = i+1

True

False

Software Data-flow Analysis – 104

Data Flow Analysis

By instrumenting the code we can determine dy-
namic variables by executing the program:

• The value should already be available if the ar-
ray index a variable, or it should be easily com-
putable if the array index is an arithmetic expres-
sion.

• We need a state variable for each element of an
array. A simple structure that can be used is to
store the states of elements of an array in the
corresponding elements of another array of the
same dimension

Software Data-flow Analysis – 105

Data Flow Analysis

If we were to create an array for the dynamic analy-
sis of

a[i,j] = a[i,k] * a[k,j]

then we would have:

sta[i,k] = f(sta[i,k], r)

sta[k,j] = f(sta[k,j], r)

sta[i,j] = f(sta[i,j], d)

Software Data-flow Analysis – 106

Data Flow Analysis

Selection of Input Data For Dynamic Analysis

• After instrumenting the program we can detect
possible data flow anomalies by executing the
program for a properly chosen set of input data.

• Input data affects the execution paths and there-
fore the number of anomalies that can be de-
tected by the instrumented program.

Software Data-flow Analysis – 107

Data Flow Analysis

Selection of Input Data For Dynamic Analysis
To detect all the data flow anomalies that can be de-
tected:

• execute the instrumented program along all
possible execution paths;

• execute all loops zero and two times;
(Based on Huang’s Theorem 1.)

Software Data-flow Analysis – 108

Data Flow Analysis

Data Flow Analysis for function parameters?

It is important to track variables when parameters
are passed by reference. One approach (Huang) is
to use a global queue.

• Before calling a function, put a state variable for
each by-reference parameter onto the queue.

• Once inside the function, pull the state variable
off the queue.

• Before exiting the function, put the updated
state variable onto the queue.

• On return from the function, pull the updated
state variable value off the queue.

Software Data-flow Analysis – 109

Data Flow Analysis

Another approach for function parameters, due to
Chan and Chen, is to use an enhanced state dia-
gram.

• Classify the parameters as:

(i) Input parameters that are left unaltered dur-
ing the execution of the subprogram (Pi);

(ii) Input parameters that also act as output pa-
rameters (Pio);

(iii) Input parameters that also act as working
variables during the execution of the subpro-
gram (Piw);

(iv) Output parameters (Po);

Software Data-flow Analysis – 110

Data-flow Analysis

The calling program causes the following actions of
the state machine:

• Treat Pi as undergoing actions r;

• Treat Pio as undergoing actions rd;

• Treat Piw as undergoing actions ru;

• Treat Po as undergoing actions d

Software Testing – 111

Data-flow Analysis

In the called program:

• We give the Pi state variable an initial state of
dr;

• We give the Pio state variable an initial state of
ds;

• We give the Piw state variable an initial state of
ds

• We give the Po state variable an initial state of u

Before returning to the calling program we need to

• Check that Pi, Pio and Piw were referenced;

• Check that Pio, Po are not in the u state;

• Don’t need to worry about Piw.

Software Testing – 112

Data-flow Analysis

Some remarks on Static vs Dynamic data flow anal-
ysis.

(i) Static has difficulties handling arrays and func-
tion parameters;
Dynamic handles arrays without too many prob-
lems.

(ii) Static approach reveals all data flow anomalies;
Dynamic approach only detects anomalies
along paths that are actually executed.

(iii) Neither is 100Because of this, its advisable to
treat static and dynamic as complementary data
flow analysis methods.

Data-flow Analysis – 113

Coverage Based Testing

The aim of coverage based testing methods is to
“cover” the program or component with test cases.

Put another way, we choose test cases to exercise
as much of the program as possible according to
some criteria. If some part of the program or compo-
nent is not exercised then there may well be undis-
covered faults lurking there.

Software Testing – 114

Coverage Based Testing Criteria

• Statement Coverage (or, Node Coverage)
Every statement of the program should be exer-
cised at least once.

• Branch Coverage (or, Decision Coverage)
Every branch (or, decision) of the program
should be exercised at least once.

• Condition Coverage
Each condition in a decision takes on all possi-
ble outcomes at least once.

• Multiple-condition coverage
All possible combinations of condition outcomes
in each decision should be invoked at least
once.

• Path coverage
Every execution path of the program should be
exercised at least once.

Software Testing – 115

Coverage Based Testing: Example

Consider the following simple module;

void main(void)

{

int a, b, c;

scanf("%d %d %d", a, b, c);

if ((a > 1) && (b == 0))

c = c / a;

if ((a == 2) || (c > 1))

c = c + 1;

while (a >= 2)

a = a - 2;

printf("%d %d %d", a, b, c);

}

Software Testing – 116

Coverage Based Testing

The control flow graph for the program appears as
follows.

START

get a, b, c

&&
b==0

a>1
c = c/a

a==2
||

c>1
c = c+1

a>=2 a = a-2

print a, b, c STOP

F

A

Y

C
NB

Y

E
N

D

Y

G
N

Control Flow graph

Software Testing – 117

Coverage Based Testing

Coverage Test cases Exec.
criteria (a,b,c) Paths
Statement (2, 0, 3) ACEGF
Branch (3, 0, 1), ACDGF,

(2, 1, 3) ABEGF
Condition (1, 0, 3), ABDF,

(2, 1, 1) ABEGF
Decision/ (2, 0, 4), ACEGF,
Condition (1, 1, 1) ABDF
Multiple (2, 0, 4), ACEGF,
Condition (2, 1, 1), ABEGF,

(1, 0, 2), ABDF,
(1, 1, 1) ABDF

Path (2, 0, 4), ACEGF,
(2, 1, 1), ABEGF,
(1, 0, 2), ABDF,
(4, 0, 0), ACDGF,
.

Software Testing – 118

Coverage Based Testing

D1 D2 D3
Test C1 C2 C3 C4 C5
cases a > 1 b==0 a==2 c > 1 a ≥ 2
(1,0,3) F T F F T T F
(2,1,1) T F F T F F T
(2,0,4) T T T T T T T
(1,1,1) F F F F F F F
(2,0,4) T T T T T T T
(2,1,1) T F F T F T T
(1,0,2) F T F F T T F
(1,1,1) F F F F F F F

D1 is C1 && C2
D2 is C3 || C4

Exercise 12 (i) Can you find an infeasible path
in this example?

Reminder: A path is said to be infeasible if
there are no test cases in the input domain that
can execute the path.

(ii) How many execution paths are there in the
program?

Software Testing – 119

Control Flow Coverage Criteria

Recall some of our coverage criteria.

• Statement coverage

• Branch coverage

• Path coverage

Can we also make use of data flow information to
guide us in selecting test cases?

Software Testing – 120

Path Selection Problem

Consider the (schematic) program below.

if (x != 0)
{

x = 0; a = 1;
else

a = 0;
if (a = 1)

b = 0
else

y = f(x);

Can we exercise all paths?

If x 6= 0 then we execute x = 0, a = 1 and b = 0.
Otherwise, if x = 0 we execute a = 0 and y = f(x).

To execute x = 0 and y = f (x) we would need x 6= 0

and a 6= 1 which is impossible to satisfy.

Software Testing – 121

Path Selection Problem

x != 0

a = 1

x = 0

a = 1

a = 0

b = 0 y = f(x)

A

B

C

D

E

F G

True False

FalseTrue

Start

Finish

Software Testing – 122

Some Coverage Analysis Definitions

Definition 13

(i) Let dn(x) denote a variable x that is assigned
a value at node (statement) n (Definition).

(ii) Let um(y) denote a variable y that is used at
node (statement) m (Use).

(iii) A definition clear path p with respect to x is
a sub-path where x is not defined at any of the
nodes (statements) in p.

(iv) A definition dm(x) reaches a use un(x) iff
there is a sub-path (m) • p • (n) such that p

is a definition clear path wrt x.

Software Testing – 123

Coverage Analysis Criteria

The aim is to define criteria with which to assess
test suits. We will only look at a sample of the full
set of criteria discussed in the literature but we will
examine some of the more popular criteria and give
some feel for their relative effectiveness.

In particular we will be looking at Data Flow Path
Selection criteria due to Rapps and Weyuker.

Frankl, P.G. and Weyuker, E. J., An Applicable Family of Data

Flow Testing Criteria, IEEE Transactions on Software Engi-

neering, vol 14, no 10 (October 1988), pp 1483-1498.

Software Testing – 124

Well Formed Data Flow Graphs

First we will assume that we have well formed data
flow graphs.

• There are no edges of the form (n, ns) or (nf , n)

where ns is the start node and nf is the final
node.

• No edges of the form (n, n).

• There is at most one edge (m, n) for all m and n.

• The CFG is connected.

• There is a single start node and a single final
node.

• Every loop has a single entry and a single exit

Software Testing – 125

Well Formed Data Flow Graphs

We will further assume the following for our CFGs.

• At least one variable is associated with a node
representing a predicate.

• No variable definitions are associated with a
node representing a predicate.

• Every definition of a variable reaches at least
one use of that variable.

• Every use is reached by at least one definition.

• Every control graph contains at least one vari-
able definition.

• No variable uses or definitions are associated ns

and nf .

Software Testing – 126

Rapps and Weyuker’s Data Flow Criteria

1. All-Defs

2. All-Uses

3. All-C-Uses, Some-P-Uses

4. All-P-Uses, Some-C-Uses

5. All-P-Uses

6. All-Du-Paths

Software Testing – 127

Rapps and Weyuker’s Data Flow Criteria
All-Defs

For All-defs we require that there is some definition-
clear sub-path from each definition to some use
reached by that definition.

1

2 3

4

5

6

d (x)

u (x)

u (x)

1

2 3

5

u (x)

Test suit requires that we test the paths from defini-
tions to uses. A test case that tests path 1, 2, 4, 6 or
1, 3, 4, 5 are both satisfactory under this criteria.

Software Testing – 128

Rapps and Weyuker’s Data Flow Criteria
All-Uses

The All-Uses criteria requires some definition-clear
sub-path from each definition to each use reached
by that definition and each successor node of the
use.

1

2 3

4

5

6

d (x)

u (x)

u (x)

1

2 3

5

u (x)

Test suit requires that we test the paths from defini-
tions to uses and their successor nodes. Test cases
for the paths 1, 2, 4, 5, 6 and 1, 3, 4, 5, 6 are satis-
factory under this criteria. A test case that tests only
1, 2, 4, 5 is not satisfactory.

Software Testing – 129

Computation Uses and
Predicate Uses

Definition 14
(i) A C-use of a variable is a ”computation use”
of a variable, for example, y = x ∗ 2;

(ii) A P-use of a variable is a ”predicate use” , for
example, if (x < 2)

All-C-Uses, Some-P-Uses

• Some definition-clear sub-path from each definition to
each C-Use reached by that definition.

• If no C-Uses are reached by a definition, then some
definition-clear sub-path from that definition to at least
one P-Use reached by that definition.

All-P-Uses, Some-C-Uses

• Some definition-clear sub-path from each definition to
each P-Use reached by that definition and each succes-
sor node of the use.

• If no P-Uses are reached by a definition, then some
definition-clear sub-path from that definition to at least
one C-Use reached by that definition.

Software Testing – 130

Rapps and Weyuker’s Data Flow Criteria
All-P-Uses

Some definition-clear sub-path from each definition
to each P-Use reached by that definition and each
successor node of the use

Software Testing – 131

Rapps and Weyuker’s Data Flow Criteria
All-DU-Paths

Here DU stands for definition-use.

All definition-clear sub-paths that are cycle-free or
simple-cycles from each definition to each use
reached by that definition and each successor node
of the use.

Software Testing – 132

All-DU-Paths Example

1

2 3

4

5

6

d (x)

u (x)

u (x)

1

2 3

5

u (x)

The DU criteria requires that we test d1(x) to each
use.

(i) d1(x) to a u2(x);

(ii) d1(x) to a u3(x);

(iii) both paths from d1(x) to u5(x).

Under this criteria, satisfactory paths are given by 1,
2, 4, 5, 6 and 1, 3, 4, 5, 6.

Software Testing – 133

Rapps and Weyuker’s Data Flow Criteria
All-Uses

1

2 3

4

5

6

d (x)

u (x)

u (x)

1

2 3

5

u (x)

The All-Uses criteria requires that we test d1(x) to
each use and its successor nodes.

(i) d1(x) to a u2(x);

(ii) d1(x) to a u3(x); and

(iii) d1(x) to u5(x).

Under this criteria, satisfactory paths are given by 1,
2, 4, 5, 6 and 1, 3, 4, 6.

Software Testing – 134

Comparing Coverage Criteria

The way to compare these criteria is to defined a
specific relation between the criteria. The relation
in question is called subsumption and is defined as
follows.

Definition 15 Criterion A subsumes criterion B iff for

any control flow graph P:

P satisfies A ⇒ P satisfies B.

Criteria A is equivalent to criteria B iff A subsumes B,

and B subsumes A.

How can we compare these criteria?

All criteria that we have studied select a set of paths,
so we compare the paths that each criteria selects.
Note, however, that the set of paths that satisfy a
criterion are not necessarily unique.

Software Testing – 135

Comparing Coverage Criteria
A Lattice of Coverage Criteria

All-Paths

All-C-Uses/Some-P-Uses

All-Defs

All-Du-Paths

All-Uses

All-P-Uses/Some-C-Uses

All-P-Uses

All-Edges

All-Nodes

Software Testing – 136

Conclusions

• An improvement over pure control flow tech-
niques;

• Provides a rationale for which combinations of
sub-paths to consider;

• Most commonly used criteria is all-uses;

• One problem with data flow coverage is infeasi-
ble paths
We don’t usually get 100% coverage.

Software Testing – 137

Object-Oriented
Testing

Software Testing – 138

Testing Object Oriented Programs

Object oriented systems provide many advantages
to the system designer and system programmers,
but in these notes we explore their testability.

• Do Object Oriented systems make testing
harder or easier?

• Does good code reuse lead to test case reuse?

• Do the techniques that we have explored ear-
lier in this course suffice for testing Object Ori-
ented programs or do we need to change exist-
ing techniques?

• Do we need to develop new techniques?

Software Testing – 139

Object-Oriented Programming Languages

Object Oriented programming languages support a
number of features that are aimed at making the de-
sign, maintenance and reuse of code much easier.

OO programming languages support abstract data
types (ADTs).

• Abstract data types provide Information hiding,
that is, only the details relevant to the problem
or the services provided by an object are visible.
Irrelevant detail is hidden. C++ and Java both
provide different storage classes such as private
and public operations for information hiding.

• Abstract data types Encapsulate data and oper-
ations, that is, they package together data and
the operations that act on that data.

Software Testing – 140

Object-Oriented Programming Languages

• OO programming languages support inheri-
tance as a convenient structuring mechanism
for programmers.

– Changes to a parent type are reflected in the
children; and

– OO programming languages support dy-
namic binding, or polymorphism.

• OO programming languages supports reuse.

Software Testing – 141

Object Oriented Programs

Each class defines a type where the instances (or
objects) of the class are to be thought of as the
members of the type.

Every member of a class has:

• Access methods;

• Instance variables (attributes).
Any access method may have access to the in-
stance variables.

• An object is an instance, or an element, of a
class.

– There may be multiple instances of a class, each with
its own instance variables.

– Methods are typically invoked via message passing.

• Object oriented programs use “Dynamic Bind-
ing”.

Software Testing – 142

Object Oriented Programs

An abstract class

public class Rectangle extends Shape
{
 private Colour c;
 private double x, y;

 protected w, h;

 public Rectangle(){w = 0.0; h = 0.0;}
 public Rectangle(double w, double h){this.w = w; this.h = h;}
 public double area(){return w * h;}
 public double circumference(){return 2*(w+h);}
 public double getWidth(){return w;}
 public double getHeight(){return h;}
}

Rectangle inherits Shape and overrides its methods to implement them.

public abstract class Shape
{
 public abstract double area();
 public abstract double circumference();
}

Software Testing – 143

Object Oriented Programs

In the case of Single Inheritance a class may only
inherit from from one, and only one, parent class.

In the case of Multiple Inheritance a class may in-
herit from one or more parent classes.

The parent class is called the Superclass and the
child is called the Subclass.

Software Testing – 144

Issues in Object Oriented Testing

• What is the basic unit for unit testing?

• What are the implications of encapsulation?

• What are the implications of inheritance?

• What are the implications of polymor-
phism/dynamic binding?

• What are the implications for testing tech-
niques?

• What are the implications for testing processes?

Software Testing – 145

The Basic Unit for OO Unit Testing

In procedural programming the basic component for
unit testing is typically a subroutine (functional or
procedure call).

• The testing method is (typically) input/output
based where we need to execute subroutines
in the process of testing.

• In functional testing strategies, once a subrou-
tine is tested and we have confidence in it, it is
usually not re-tested unless the subroutine itself
is changed.

Software Testing – 146

The Basic Unit for OO Unit Testing

In object-oriented programming the basic compo-
nent for testing is:

class = data structure + set of operations.

Objects are instances of classes where the internal
states of the object are relevant to the testing of an
object. Thus, the correctness of an object is not
based only on the output given by method calls, but
also on the internal state of the object.

Software Testing – 147

The Basic Unit for OO Unit Testing

Classes are the natural unit for unit test case design.

• Methods are meaningless apart from their
class. For example, a method may require an
object to be in a specific state before it can be
executed, where that state can only be set by
another method (or combination of methods) in
the class.

Software Testing – 148

Implications for Encapsulation

Encapsulation is not usually a source of errors (more
often its the converse) but it may be an obstacle to
testing.

• How can we get the concrete state of an object?
We need to break the encapsulation to perform
the test by:

– Using features of the language (e.g. C++
friend); or

– Using low level probes or debugging tools to
manually inspect the state.

Software Testing – 149

Implications for Encapsulation

How can we get the concrete state of an object?

• We can use the abstraction by constructing sce-
narios based on sequences of events.

– Execute the methods in the classes to exam-
ine sequence of events;

– The object State is implicitly inspected via
the access methods.

• Use or provide “hidden” functions to examine
the state (Instrumenting the code). Instrument-
ing the code in such a way is extremely useful
for debugging the system throughout the life of
the system.

Software Testing – 150

Implications of Inheritance

Inherited features often require re-testing – a new
context for the use of the class results when features
are inherited.

• Multiple inheritance increases the number of
contexts to test.

Specialisation relationships should correspond to
problem domain specialisation. The re-usability of
superclass test cases depends on this idea.

Software Testing – 151

Implications of Inheritance

Which functions must be tested in a subclass?

class parent {
void foo(int xx);
intrange(); // returns between 1-10

}

class child extends parent {
intrange(); // returns between 1-20

}

• When testing the child, we need to retest
range() because of the overloading in the sub-
class.

• Do we need to retest foo()? Suppose foo()
contains the line

x = x/intrange();

In this case foo() depends on intrange()
and re-testing is necessary, but maybe we do
not need to retest completely.

Software Testing – 152

Implications of Inheritance

Can tests for a parent class be reused for a child
class?

• Observe that parent.range() and
child.range() are two different functions
with different specifications and implementa-
tions.

• Test cases are derived from the different spec-
ifications as well as the implementation, how-
ever, the functions are likely to be similar, so
the provided we use principles such as the
“open/closed principle” in design, the greater
the overlap in testing.

• New tests are those for child.range()

requirements that are not satisfied by the
parent.range() tests.

Software Testing – 153

Implications of Inheritance

Consider the following program fragment.
Parent::describeSelf()
{

if (val < 0) message("Less");
else if (val == 0) message ("Equal");
else message("More");

}

Child::describeSelf()
{

if (val < 0) message("Less");
else if (val == 0) message ("Zero Equal");
else
{

message("More");
if (val == 42) message("Jackpot");

}
}

The tests for the parent and child classes appear in
the following table.

Value Parent Child Test
Response Response Changes

-1 Less Less OK
0 Equal Zero Equal Changed
1 More More OK
42 Jackpot Add

Software Testing – 154

Implications of Inheritance

One approach to inheritance testing is to Flattening
the Inheritance Structure.

• Each subclass is tested as if all inherited fea-
tures were newly defined.

• Tests used in super-classes can be reused but
many tests will be redundant.

Software Testing – 155

Implications of Inheritance

Another approach is Incremental Inheritance-based
Testing

• First test each base class by: (1) Testing each
method; and (2) Testing interactions among
methods.

• Then, consider all sub-classes that use only
previously tested classes.

• A child inherits the parent’s test suite which is
used as a basis for test planning. We only de-
velop new test cases for those entities that are
directly or indirectly changed.

Software Testing – 156

Implications of Inheritance

Incremental inheritance-based testing:

• Saves time by reducing the number of test
cases;

• Reduces the execution time since fewer test
cases are needed than for a flattened hierarchy;

• Reduces the number of test results that need to
be evaluated, but it may increase the cost of se-
lecting new test cases, especially in determining
what has changed and what is new.

• Inheritance based testing is a form of regression
testing where the aim is to minimise the num-
ber of test cases needed to exercise a modified
class.

Software Testing – 157

Implications of Polymorphism

Consider the following inheritance hierarchy.

Shape

. . .SquarePentagonTriangle

void resize(Shape polygon)
{

...
data = polygon.area();
...

}

The implementation of area that actually gets called
may depend on the state and the runtime environ-
ment.

Software Testing – 158

Implications of Polymorphism

In procedural programming, procedure calls are
statically bound.

In the case of object oriented programming each
possible binding of a polymorphic component re-
quires a separate set of test cases.

• However, it may be hard to find all such bindings
– after-all the exact binding used in a particular
instance may only be known at run-time.

• Dynamic binding also complicates integration
planning. Many server classes may need to be
integrated before a client class can be tested.

Software Testing – 159

Implications of Polymorphism

One approach to the dynamic binding problem is to
reduce combinatorial explosion in the number of test
cases that cover all possible combinations of poly-
morphic calls:

• Use analysis (e.g. program domain testing or
program slicing) to determine possible bindings

• Note: In most systems the average number of
”possible” bindings is 2

Software Testing – 160

Implications for Testing Techniques

Here we need to consider:

• Black-box testing

• White-box testing

• State-based testing

Software Testing – 161

Black-box Testing

Conventional black-box methods are useful for
object-oriented systems!

We don’t need the details of the internal states for
objects.

Software Testing – 162

White-box Testing

White-box techniques can be adapted to method
testing, but are not sufficient for testing classes
(why?).

Part of the answer is that methods can influence
each other through the object state. In this case the
coverage or domain criteria can become dependent
on the internal state.

In turn the state of an object may well depend on the
preceding sequence of object method calls and their
parameter values.

Software Testing – 163

State-based Testing

In the case of state-based testing we can derive test
cases by modelling a class as a state machine.

• Begin by identifying the stating, exiting and legal
states for the class;

• Methods cause state transitions;

• The state model now defines allowable se-
quences of method calls, for example, can’t pop
from a stack until we push something on to it;

• Test cases are then devised to exercise each
transition.

Software Testing – 164

State-based Testing

A simple state model of a stack.

Cannot pop
from this state

[if stack size > 1]
Pop

Push

[If stack size == 1]
Pop

Push

Create

Software Testing – 165

State-based Testing

State models are often created as part of a design
methodology.

For example, UML uses state-charts precisely for
the purpose of specifying and understanding the le-
gal sequences of actions on an object.

Software Testing – 166

State-based Testing

Of course there are some problems with state based
testing!

• It may take a very lengthy sequence of opera-
tions to get an object into some desired state.

• State based testing may not be useful if the
class is designed to accept any possible se-
quence of method calls.

• State control may be distributed over an entire
application with methods from other classes ref-
erencing the state of the class under test.

System-wide control makes it difficult to verify a
class in isolation

• We often need a global state model to show how
classes interact

Software Testing – 167

Implications for Testing Processes

Unit Testing

• Unit testing focuses on behaviour of individual units (re-
call that classes best serve as units in OO testing).

• Tests are derived from module specifications or source
code.

• Drivers and stubs usually required

Integration Testing

• Integration testing focuses on communication and inter-
face problems.

• Test cases are derived from module interfaces and de-
tailed architecture specifications

• Some drivers and stubs may be required.

Regression Testing

• Re-testing fixed/modified code

System testing

• System testing focuses on behaviour of the system as a
whole.

• Test are derived from requirements specifications.

• Code seen as a black box

• Drivers and stubs usually not needed

Software Testing – 168

Unit Testing

The OO context changes what we normally under-
stand by a unit.

The changes concern:

• The state of instance variables; and

• Sequences of method calls.

We need to test a class and its subclasses.

Software Testing – 169

Integration Testing

There is a strong need to test component interaction,
but to do this we need to understand how objects
interact!

There is also a need to test specific contexts such as
dynamically bound variables and parameters, and
polymorphic operators.

Object-oriented testing strategies include:

• Thread-based strategies; and

• Uses-based strategies.

Software Testing – 170

Integration Testing

Object-oriented testing strategies:

Thread-based • A thread consists of all the
classes needed to respond to a set of related
external inputs or events;

• Each class is unit tested, and then the set of
classes in the thread is exercised.

Uses-based • Begin by testing classes that use
few or no other classes;

• Then, test classes that use the first group of
classes;

• Follow this by testing the classes that use
the second group, and so on;

• Create stubs/drivers as necessary.

Software Testing – 171

Regression Testing

Changes may have greater impact because of inher-
itance problems discussed earlier.

Software Testing – 172

System Testing

System testing is not usually impacted!

Software Testing – 173

Summary

• Abstract data types

– Well-defined interfaces and centralised fo-
cus can help with testing

• Inheritance Increases the reuse of classes, and
thus reuse of test cases, but

– the impact of changes must be carefully as-
sessed and taken into account

• Dynamic binding

– Simplifies code, but testing must consider all
”possible” bindings;

– Beware of ”hidden” interactions!

Software Testing – 174

