Course: Discipline Specific Core 1

Semester	1	
Paper Number	HCHCR1012T (60 MARKS) & HCHCR1012P (40 MARKS)	
Paper Title	CORE COURSE 1: ORGANIC CHEMISTRY	
No. of Credits	Theory-04, Practicals-02	
Theory/Composite	Composite	
No. of periods assigned	Th: 4	
	Pr: 3	
Name of Faculty member(s)	Dr. Ankur Ray	
	Prof. Dipankar Das	
Course description/objective	Theory:	
	To have basic knowledge about the introductory concepts of Organic	
	Chemistry, stereochemistry and reaction mechanisms	
	Practical:	
	To identify the special elements and functional groups in an unknown	
	organic sample.	ts und junctional groups in un unknown
Syllabus	Annexure Core Course: 1	
Texts		
Reading/Reference Lists	Theory:	
	1. Clayden, J., Greeves, N. & Warren, S. Organic Chemistry, Second edition,	
	Oxford University Press, 2012.	
	2. Keeler, J., Wothers, P. Chemical Structure and Reactivity – An Integrated	
	approach, Oxford University Press.	
	3. Sykes, P. A guidebook to Mechanism in Organic Chemistry, Pearson Education,	
	2003.	
	4. Smith, J. G. <i>Organic Chemistry</i> , Tata McGraw-Hill Publishing Company Limited. 5. Carey, F. A., Guiliano, R. M. <i>Organic Chemistry</i> , Eighth edition, McGraw Hill	
	Education, 2012.	
	6. Eliel, E. L. & Wilen, S. H. <i>Stereochemistry of Organic Compounds</i> , Wiley: London, 1994.	
	 Nasipuri, D. Stereochemistry of Organic Compounds, Wiley Eastern Limited. Morrison, R. N. & Boyd, R. N. Organic Chemistry, Dorling Kindersley (India) Pvt. 	
	Ltd. (Pearson Education).	
	9. Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt. Ltd.	
	(Pearson Education)	
	10. Fleming, I. Molecular Orbitals and Organic Chemical Reactions, Reference (Student Edition Wiley, 2000	
	Reference/Student Edition, Wiley, 2009. 11. James, J., Peach, J. M. <i>Stereochemistry at a Glance</i> , Blackwell Publishing,	
	2003.	
	12. Robinson, M. J. T., <i>Stereochemistry</i> , Oxford Chemistry Primer, Oxford	
	University Press, 2005.	
	Practical: Nad, Mahapatra, Ghosal-Practical Chemistry	
Evaluation	Theory: 60 marks	Practical: 40 marks
		(Continuous Assessment)
	CIA: 10	Internal Assessment Exams: 30
	End-Sem: 50	Viva (End Sem): 8
		Attendance: 2
Paper Structure for the End Sem	6 (SIX) Questions (each of 10 marks) will be set and the students will have to	
Theory Exam (50 marks)	answer any 5 (FIVE).	
	Each of the Questions (10 marks) will consist of 2 or 3 parts (of 2/ 3/ 4/ 5)	

Annexure Core Course (CC): 1

(Credits: Theory-04, Practicals-02)

Theory: 60 Lectures

Basics of Organic Chemistry

Bonding and Physical Properties

(25 Lectures)

Valence Bond Theory: concept of hybridisation, shapes of molecules, resonance (including hyperconjugation); calculation of formal charges and double bond equivalent (DBE); orbital pictures of bonding (sp³, sp², sp: C-C, C-N & C-O systems and *s-cis* and *s-trans* geometry for suitable cases).

Electronic effects and their influence on acidity-basicity: inductive effect, field effect, mesomeric effect, resonance energy; bond polarization and bond polarizability; electromeric effect; steric effect, steric inhibition of resonance.

MO theory: qualitative idea about molecular orbitals, bonding and antibonding interactions, idea about σ , σ^* , π , π^* , n - MOs; basic idea about Frontier MOs (FMO); concept of HOMO, LUMO and SOMO; interpretation of chemical reactivity in terms of FMO interactions; sketch and energy levels of π MOs of i) acyclic p orbital system (C=C, conjugated diene, triene, allyl and pentadienyl systems) ii) cyclic p orbital system (neutral systems: [4], [6]-annulenes; charged systems: 3-,4-,5-membered ring systems); Hückel's rules for aromaticity up to [10]-annulene (including mononuclear heterocyclic compounds up to 6-membered ring); concept of antiaromaticity and homoaromaticity; non-aromatic molecules; Frost diagram.

Physical properties: influence of hybridization on bond properties: bond dissociation energy (BDE) and bond energy; bond distances, bond angles; concept of bond angle; melting point/boiling point and solubility of common organic compounds in terms of covalent & non-covalent intermolecular forces; polarity of molecules and dipole moments; relative stabilities of isomeric hydrocarbons in terms of heat of hydrogenation, heat of combustion and heat of formation.

General Treatment of Reaction Mechanism -I (10 Lectures)

Mechanistic classification: ionic, radical and pericyclic (definition and example);

reaction type: addition, elimination and substitution reactions (definition and example); nature of bond cleavage and bond formation: homolytic and heterolytic bond fission, homogenic and heterogenic bond formation; curly arrow rules in representation of mechanistic steps; reagent type: electrophiles and nucleophiles (elementary idea); electrophilicity and nucleophilicity in terms of FMO approach.

Reactive intermediates: carbocations (carbenium and carbonium ions), carbanions, carbon radicals, carbenes: generation and stability, structure using orbital picture and electrophilic/nucleophilic behavior of reactive intermediates (elementary idea).

Stereochemistry -I

(25 Lectures)

Bonding geometries of carbon compounds and representation of molecules: tetrahedral nature of carbon and concept of asymmetry; Fischer, sawhorse, flying-wedge and Newman projection formulae and their inter translations.

Concept of chirality and symmetry: symmetry elements, molecular chirality and centre of chirality; asymmetric and dissymmetric molecules; enantiomers and diastereomers; concept of epimers; concept of stereogenicity, chirotopicity and pseudoasymmetry; chiral centres and number of stereoisomerism: (n=odd and n= even)systems involving 1/2/3-chiral centre(s) (AA, AB, ABA and ABC types).

Relative and absolute configuration: D/L and *R/S* descriptors; *erythro/threo* and *meso* nomenclature of compounds; *syn/anti* nomenclatures for aldols; *E/Z* descriptors for C=C, conjugated diene, triene, C=N and N=N systems; combination of *R/S*- and *E/Z*- isomerisms.

Optical activity of chiral compounds: Concept of plane polarised light and polarimeter, optical rotation, specific rotation and molar rotation; racemic compounds, racemisation (through cationic, anionic, radical intermediates and through reversible formation of stable achiral intermediates); resolution of acids, bases and alcohols via diastereomeric salt formation; optical purity and enantiomeric excess; invertomerism of chiral trialkylamines.

CC: 1 (Practical) 42 Lectures

1. Separation, based upon solubility, by using common laboratory reagents like water (cold, hot), dil. HCl, dil. NaOH, dil. NaHCO₃, *etc.*, of components of a binary solid mixture; purification of **any one** of the separated components by crystallization and determination of its melting point. The composition of the mixture may be of the following types: Benzoic acid/*p*-Toluidine; *p*-Nitrobenzoic acid/*p*-Aminobenzoic acid; *p*-Nitrotolune/*p*-Anisidine; *etc*.

2. **Determination of boiling point** of common organic liquid compounds e.g., ethanol, cyclohexane, chloroform, ethyl methyl ketone, cyclohexanone, acetylacetone, anisole, crotonaldehyde, mesityl oxide, *etc.* [Boiling point of the chosen organic compounds should preferably be less than 160 °C]

3. Identification of a Pure Organic Compound

Solid compounds: oxalic acid, tartaric acid, citric acid, succinic acid, resorcinol, urea, glucose, cane sugar, benzoic acid and salicylic acid

Liquid Compounds: formic acid, acetic acid, methyl alcohol, ethyl alcohol, acetone, aniline, dimethylaniline, benzaldehyde, chloroform and nitrobenzene.