DSC: CORE COURSE 9

Semester	4	
Paper Number	HCHCR4092T (60 MARKS) & HCHCR4092P (40 MARKS)	
Paper Title	CORE COURSE 9: INORGANIC CHEMISTRY	
No. of Credits	Theory-04, Practicals-02	
Theory/Composite	Composite	
No. of periods assigned	Th: 4	
	Pr: 3	
Name of Faculty member(s)	Dr. Sanjib Ganguly	
	Dr. Rahul Sharma	
Course description/objective	Theory:	
	1. To understand the basic trends in the stability and reactivity of certain	
	type of compounds of the representative elements as we move down the	
	group of congeners.	
	2. To be aware of the structure and bonding in certain specific compounds	
	of the s and p-block elements.	
	3. To realize the nature of ligands and the coordination complexes, their	
	IUPAC names and isomeric forms.	
	Practical:	
	To develop the skill for synthesizing coordination complexes using different first	
	transition metal ions and simple monodentate and bidentate ligands.	
Syllabus	Annexure Core Course: 9	
Synabus	Annexure core course. 9	
- .		
Texts		
Reading/Reference Lists	Theory:	
	1.Huheey, J. E.; Keiter, E.A. & Keiter, R.L. <i>Inorganic Chemistry, Principles of Structure</i>	
	and Reactivity 4th Ed., Harper Collins 1993, Pearson, 2006.	
	2. Greenwood, N.N. & Earnshaw A. <i>Chemistry of the Elements</i> , Butterworth-	
	Heinemann, 1997.	
	3. Cotton, F. A., Wilkinson, Advanced Inorganic Chemistry, 6 th edition, Wiley	
	4. Hollman , Wiberg, Inorganic Chemistry	
	Practical:	
	Inorganic Synthesis, Vol. 1-10.	
Evaluation	Theory: 60 marks	Practical: 40 marks
		(Continuous Assessment)
	CIA: 10	Internal Assessment Exams: 30
	End-Sem: 50	Viva (End Sem): 8
		Attendance: 2
Paper Structure for the End Sem	6 (SIX) Questions (each of 10 marks) will be set and the students will have to	
Theory Exam (50 marks)	answer any 5 (FIVE).	
	Each of the Questions (10 marks) will consist of 2 or 3 parts (of $2/3/4/5$)	

Annexure Core Course (CC): 9

(Credits: Theory-04, Practicals-02)

CC: 9 (Theory) 52 Lectures

Module 1: Chemistry of *s* and *p* Block Elements (30 Lectures)

Relative stability of different oxidation states, diagonal relationship and anomalous behaviour of first member of each group. Allotropy and catenation. Study of the following compounds with emphasis on structure, bonding, preparation, properties and uses. Beryllium hydrides and halides. Boric acid and borates, boron nitrides, borohydrides (diborane) and graphitic compounds, silanes, Oxides and oxoacids of nitrogen, phosphorus, sulphur and chlorine. Peroxo acids of sulphur, sulphur-nitrogen compounds, interhalogen compounds, polyhalide ions, pseudohalogens, fluorocarbons and basic properties of halogens.

Rationalization of inertness of noble gases, peculiar behaviour of liquid helium, Clathrates; preparation and properties of XeF_2 , XeF_4 and XeF_6 ; Nature of bonding in noble gas compounds (Valence bond treatment and MO treatment for XeF_2 and XeF_4). Xenon-oxygen compounds. Molecular shapes of noble gas compounds (VSEPR theory).

Types of inorganic polymers, comparison with organic polymers, synthesis, structural aspects and applications of silicones and siloxanes. Borazines, silicates and phosphazenes.

Module 2: Coordination Chemistry-I (22 Lectures)

Coordinate bonding: double and complex salts. Werner's theory of coordination complexes, Classification of ligands, Ambidentate ligands, chelates, Coordination numbers, IUPAC nomenclature of coordination complexes (up to two metal centers), Isomerism in coordination compounds, constitutional and stereo isomerism, Geometrical and optical isomerism in square planar and octahedral complexes.

CC: 9 (Practical) 42 Lectures

Inorganic Synthesis

- 1. Synthesis of a dibromo(dimethyglyoxime)(dimethylglyoximato)cobalt(III)
- 2. Synthesis of *cis* and *trans* isomers of bis(glycinato)copper(II) monohydrate
- 3. Synthesis of tris(arylazooximato)cobalt(III)
- 4. Synthesis of (arylazooxime)(arylazooximato)copper(I)
- 5. Synthesis of Tris-(ethylenediamine) nickel(II) chloride.
- 6. Synthesis of [Mn(acac)₃] and Fe(acac)₃] (acac= acetylacetonate)