Course: Discipline Specific Core 10

Semester	4	
Paper Number	HCHCR4102T (60 MARKS) & HCHCR4102P (40 MARKS)	
Paper Title	CORE COURSE X: ORGANIC CHEMISTRY	
No. of Credits	Theory-04, Practicals-02	
Theory/Composite	Composite	
No. of periods assigned	Th: 4	
	Pr: 3	
Name of Faculty member(s)	Dr. Ankur Ray	
	Prof. Dipankar Das	
Course description/objective Theory:		
	To have knowledge about i) Nitrogen compounds	
	ii) Rearrangements	
	iii) Organic Synthesis with retrosynthetic approach	
	iv) Organic Spectroscopy	
	Practical:	
	The students will learn to do Quantitative Estimations:	
Syllabus	Annexure Core Course: 7	
Tauta		
Texts Reading/Reference Lists	Theory	
Reading/Reference Lists	Theory:	
	Clayden, J., Greeves, N., Warren, S. Organic Chemistry, Second edition,	
	Oxford University Press 2012. 2. Sykes, P. A guidebook to Mechanism in Organic Chemistry, Pearson	
	Education, 2003.	
	3. Smith, J. G. <i>Organic Chemistry</i> , Tata McGraw-Hill Publishing Company	
	Limited.	
	4. Carey, F. A. & Guiliano, R. M. Organic Chemistry, Eighth edition, McGraw	
	Hill Education, 2012.	
	5. Loudon, G. M. Organic Chemistry, Fourth edition, Oxford University Press,	
	2008.	
	6. Eliel, E. L. & Wilen, S. H. Stereochemistry of Organic Compounds, Wiley: London, 1994.	
	 Nasipuri, D. Stereochemistry of Organic Compounds, Wiley Eastern Limited. 	
	8. Morrison, R. N. & Boyd, R. N. Organic Chemistry, Dorling Kindersley (India)	
	Pvt. Ltd. (Pearson Education). 9. Finar, I. L. <i>Organic Chemistry (Volume 1)</i> Pearson Education.	
	10. Graham Solomons, T.W., Fryhle, C. B. <i>Organic Chemistry</i> , John Wiley &	
	Sons, Inc.	
	11. James, J., Peach, J. M. <i>Stereochemistry at a Glance</i> , Blackwell Publishing, 2003.	
	12. Robinson, M. J. T., <i>Stereochemistry</i> , Oxford Chemistry Primer, Oxford	
	University Press, 2005.	
	13. Maskill, H., Mechanisms of Organic Reactions, Oxford Chemistry Primer,	
	Oxford University Press.	
	<u>Practical</u>	
	1. Arthur, I. V. <i>Quantitative Organic Analysis,</i> Pearson	
	2. University Hand Book of Undergraduate Chemistry Experiments, edited by	
	Mukherjee, G. N., University of Calcutta	

Evaluation	Theory: 60 marks	Practical: 40 marks (Continuous Assessment)
	CIA: 10 End-Sem: 50	Internal Assessment Exams: 30 Viva (End Sem): 8 Attendance: 2
Paper Structure for the End Sem Theory Exam (50 marks)	6 (SIX) Questions (each of 10 marks) will be set and the students will have to answer any 5 (FIVE). Each of the Questions (10 marks) will consist of 2 or 3 parts (of 2/ 3/ 4/ 5)	

CHEMISTRY -CC 10: ORGANIC CHEMISTRY

(Credits: Theory-04, Practicals-02)

Theory: 60 Lectures

Nitrogen compounds

Amines: Aliphatic & Aromatic: preparation, separation (Hinsberg's method) and identification of primary, secondary and tertiary amines; reaction (with mechanism): Eschweiler–Clarke methylation, diazo coupling reaction, Mannich reaction; formation and reactions of phenylenediamines, diazomethane and diazoacetic ester.

Nitro compounds (aliphatic and aromatic): preparation and reaction (with mechanism): reduction under different conditions; Nef carbonyl synthesis, Henry reaction and conjugate addition of nitroalkane anion.

Alkylnitrile and isonitrile: preparation and reaction (with mechanism): Thorpe nitrile condensation, von Richter reaction.

Diazonium salts and their related compounds: reactions (with mechanism) involving replacement of diazo group; reactions: Gomberg, Meerwein, Japp-Klingermann.

Rearrangements

Mechanism with evidence and stereochemical features for the following

Rearrangement to electron-deficient carbon: Wagner-Meerwein rearrangement, pinacol rearrangement, dienone-phenol; Wolff rearrangement in Arndt-Eistert synthesis, benzil-benzilic acid rearrangement, Demjanov rearrangement, Tiffeneau–Demjanov rearrangement.

Rearrangement to electron-deficient nitrogen: rearrangements: Hofmann, Curtius, Lossen, Schmidt and Beckmann.

Rearrangement to electron-deficient oxygen: Baeyer-Villiger oxidation, cumene hydroperoxide-phenol rearrangement and Dakin reaction.

Aromatic rearrangements: Migration from oxygen to ring carbon: Fries rearrangement and Claisen rearrangement.

(14 Lectures)

(12 Lectures)

Migration from nitrogen to ring carbon: Hofmann-Martius rearrangement, Fischer-Hepp rearrangement, *N*-azo to *C*-azo rearrangement, Bamberger rearrangement, Orton rearrangement and benzidine rearrangement

Organic Synthesis with retrosynthetic approach

Retrosynthetic analysis: disconnections; synthons, donor and acceptor synthons; natural reactivity and *umpolung*; latent polarity in bifunctional compounds: consonant and dissonant polarity; illogical electrophiles and nucleophiles; synthetic equivalents; functional group interconversion and addition (FGI and FGA); C-C disconnections and synthesis: one-group and two-group (1,2- to 1,5-dioxygenated compounds), reconnection (1,6-dicarbonyl); protection-deprotection strategy (alcohol, amine, carbonyl, acid).

Strategy of ring synthesis: thermodynamic and kinetic factors; synthesis of large rings, application of high dilution technique.

Asymmetric synthesis: stereoselective and stereospecific reactions; diastereoselectivity and enantioselectivity (only definition); enantioselectivity: kinetically controlled MPV reduction; diastereoselectivity: addition of nucleophiles to C=O adjacent to a stereogenic centre: Cram's and Felkin-Anh models.

Organic Spectroscopy

(16 Lectures)

(18 Lectures)

UV Spectroscopy: introduction; types of electronic transitions, end absorption; transition dipole moment and allowed/forbidden transitions; chromophores and auxochromes; Bathochromic and Hypsochromic shifts; intensity of absorptions (Hyper-/Hypochromic effects); extended conjugated systems (dienes, aldehydes and ketones); relative positions of λ_{max} considering conjugative effect, steric effect, solvent effect, effect of pH; effective chromophore concentration: keto-enol systems; benzenoid transitions.

IR Spectroscopy: introduction; modes of molecular vibrations (fundamental and non-fundamental); IR active molecules; application of Hooke's law, force constant;

fingerprint region and its significance; effect of deuteration; overtone bands; vibrational coupling in IR; characteristic and diagnostic stretching frequencies of C-H, N-H, O-H, C-O, C-N, C-X, C=C (including skeletal vibrations of aromatic compounds), C=O, C=N, N=O, C=C, C=N; characteristic/diagnostic bending vibrations are included; factors affecting stretching frequencies: effect of conjugation, electronic effects, mass effect, bond multiplicity, ring-size, solvent effect, H-bonding on IR absorptions; application in functional group analysis.

NMR Spectroscopy: introduction; nuclear spin; NMR active molecules; basic principles of Proton Magnetic Resonance; equivalent and non-equivalent protons; chemical shift and factors influencing it; ring current effect; significance of the terms: up-/downfield, shielded and deshielded protons; spin coupling and coupling constant (1st order spectra); relative intensities of *first-order* multiplets: chemical

and magnetic equivalence in NMR ; elementary idea about *non-first-order* splitting; anisotropic effects in alkene, alkyne, aldehydes and aromatics; NMR peak area, integration; relative peak positions with coupling patterns of common organic compounds (both aliphatic and benzenoid-aromatic); rapid proton exchange; interpretation of NMR spectra of simple compounds.

Applications of IR, UV and NMR spectroscopy for identification of simple organic molecules.

Core Course-X (LAB)

(60 Lectures)

Quantitative Estimations: Each student is required to perform all the experiments.

- 1. Estimation of glycine by Sörensen's formol method
- 2. Estimation of glucose by titration using Fehling's solution
- 3. Estimation of sucrose by titration using Fehling's solution
- 4. Estimation of vitamin-C (reduced)
- 5. Estimation of aromatic amine (aniline) by bromination (Bromate-Bromide) method
- 6. Estimation of phenol by bromination (Bromate-Bromide) method
- 7. Estimation of formaldehyde (Formalin)
- 8. Estimation of acetic acid in commercial vinegar
- 9. Estimation of urea (hypobromite method)
- 10. Estimation of saponification value of oil/fat/ester