Semester	TWO		
Paper Number	HSTCR2041T		
Paper Title	Algebra		
No. of Credits	6		
Theory/Composite	Theory		
No. of periods assigned			
	Pr: NIL		
Modules	Module 1: Units 1 & 2 (2 periods/week)		
	Module 2: Units 3 & 4 (4 periods/week)		
Course	After completion of the course a student is expected to have an idea of		
description/objective			
	• Matrix algebra and determinants.		
	• Theory of equations.		
	• Vector spaces, subspaces, their dimensions and basis.		
	• Rank of a matrix and systems of linear equations.		
	• Characteristic roots and vectors along with the		
	understanding of classification of quadratic forms.		
	• Linear transformation in connection to matrices.		
This course is expected to lay the foundations to the c			
	Multivariate Analysis and Linear Model.		
Syllabus	UNIT1:		
	Algebra of matrices - A review, theorems related to triangular,		
	symmetric and skew symmetric matrices, idempotent matrices,		
	orthogonal matrices, singular and non-singular matrices and their properties. Trace of a matrix. Adjoint and inverse of a matrix and		
	related properties, Partitioning of matrices and simple properties.		
	[10L]		
	UNIT 2:		
	Determinants of Matrices: Definition, properties and applications		
	of determinants for 3 rd and higher orders, evaluation of		
	determinants of order 3 and more using transformations.		
	Symmetric and Skew symmetric determinants, Circulant		
	determinants and Vandermonde determinants for nth order,		
	Jacobi's Theorem. Product of determinants. Use of determinants in		
	solution to the system of linear equations.		
	[16L]		
	UNIT 3: Vector spaces Subspaces sum of subspaces Span of a set Linear		
	Vector spaces, Subspaces, sum of subspaces, Span of a set, Linear		
	dependence and independence, dimension and basis, dimension theorem. Orthogonal vectors. Green Schmidt, orthogonalization		
	theorem. Orthogonal vectors, Gram-Schmidt orthogonalization, ortho-complement space. Row space & column space of a matrix,		
	1 5		
	[20L] Elementary matrices row reduction and echelon forms, the matrix		
	Elementary matrices, row reduction and echelon forms, the matrix equations Ax=b, solution sets of linear equations.		

	Applications of linear equations, inverse of a matrix. Rank of a matrix, row-rank, column-rank, standard theorems on ranks, rank of the sum and the product of two matrices. Characteristic roots and Characteristic vector, Properties of characteristic roots, Cayley Hamilton theorem, Quadratic forms: Classification & canonical reduction. Rank and Signature, Linear transformations. Applications of Linear Algebra in Statistics. [22L] UNIT 4: Theory of equations, statement of the fundamental theorem of algebra and its consequences. Relation between roots and coefficients of any polynomial equations. Solutions of cubic and biquadratic equations when some conditions on roots of equations are given.		
	[10L]		
List of Practical	NIL		
Reading/Reference	1. Hadley G.(2002): Linear Algebra. Narosa		
Lists	Publishing House (Reprint).		
	2. Searle S.R.(1982): Matrix Algebra Useful for		
	Statistics. John Wiley &Sons.3. Narayan Shanti (2004): A Textbook of Matrices, S Chand & Co Ltd.		
	 Hoffman Kenneth, Kunze Ray (1978):Linear Algebra. Phi Learning Pvt Ltd. 		
Evaluation	CIA: 20 End Sem Exam: 80		
	Total : 100		
	Module 1: 25		
	Module 2: 55		
Paper Structure for End	Short questions (5 marks	Long questions (15 marks each)	
Sem	each)		
Module 1	2 out of 3	1 out of 2	
Module 2	5 out of 8	2 out of 3	