Semester	FOUR		
Paper Number	HSTCR4082T		
Paper Title	Statistical Inference 2		
No. of Credits	6		
Theory/Composite	Composite		
No. of periods assigned	Th: 4		
	Pr: 3		
Module	Single		
Course	At the end of the course a student should		
description/objective			
	• Understand the basic notions of point estimation.		
	• Visualise the notion of MVUE.		
	• Know the different methods to generate point estimators.		
	• Understand the Neyman Pearson approach to tests of significance		
	• Understand the Likelihood approach to tests of		
	significance and its general applicability.		
	• Understand the link between the Neyman Pearson and		
	Likelihood approach.		
	• Understand the basic difference between a fixed sample		
	approach and the sequential approach to testing of		
	hypotheses.		
Syllabus	UNIT 1:		
	<i>Estimation:</i> Concepts of estimation, unbiasedness, mean square		
	error, sufficiency, completeness and exponential family of		
	distributions.		
	[0L] Eactorization theorem Minimum variance unbiased estimator		
	(MVUE) Rao-Blackwell and Lehmann-Scheffe theorems and		
	their applications		
	[10L]		
	Cramer-Rao inequality (statement and applications) and MVB		
	estimators		
	[4L]		
	UNIT 2:		
	Methods of Estimation: Method of moments, method of		
	maximum likelihood estimation, method of minimum Chi-		
	square		
	[8]]		
	UNIT 3:		
	Principles of test of significance: Most powerful test. uniformly		
	most powerful test. Nevman Pearson Lemma (statement and		
	applications to construct most powerful test), Unbiased test.		
	[10]]		
	Likelihood ratio test properties of likelihood ratio tests (without		
	proof)		
	proor)		

	[3L]
	UNIT 4:Sequential Analysis: Sequential probability ratio test (SPRT) forsimple vs simple hypotheses.[3L]Fundamental relations among α , β , A and B, determination of Aand B in practice.[4L]Wald's fundamental identity and the derivation of operatingcharacteristics (OC) and average sample number (ASN)functions. Examples based on Normal, Poisson, Binomial andExponentialdistributions.[4L]
List of Practical	 Unbiased estimators (including unbiased but absurd estimators) Cramer-Rao inequality and MVB estimators Sufficient Estimators – Factorization Theorem, Rao-Blackwell theorem, Complete Sufficient estimators Lehman-Scheffe theorem and UMVUE Maximum Likelihood Estimation Estimation by the method of moments, minimum Chi-square Most powerful critical region (NP Lemma) Uniformly most powerful critical region Inbiased critical region Power curves Likelihood ratio tests for simple null hypothesis against simple alternative hypothesis Likelihood ratio tests for simple null hypothesis against composite alternative hypothesis Asymptotic properties of LR tests SPRT procedure OC function and OC curve ASN function and ASN curve
Reading/Reference Lists	 Goon A.M., Gupta M.K.: Das Gupta.B. (2005), Fundamentals of Statistics, Vol. I, World Press, Calcutta. Rohatgi V. K. and Saleh, A.K. Md. E. (2009): An Introduction to Probability and Statistics. 2nd Edn. (Reprint) John Wiley and Sons. Miller, I. and Miller, M. (2002) : John E. Freund's Mathematical Statistics (6th addition, low price edition), Prentice Hall of India. Dudewicz, E. J., and Mishra, S. N. (1988): Modern Mathematical Statistics. John Wiley & Sons. Mood A.M, Graybill F.A. and Boes D.C (2001) : Introduction to the Theory of Statistics, McGraw Hill, New Delhi. Bhat B.R, Srivenkatramana T and Rao Madhava K.S.

	 (1997) Statistics: A Beginner's Text, Vol. I, New Age International (P) Ltd. 7. Snedecor G.W and Cochran W.G.(1967) Statistical Methods. lowa State University Press. 		
Evaluation	TheoryCIA:10End-Sem:50Total:60	Practical Continuous assessment: 40	
Paper Structure for End Sem Theory	Short questions (5 marks each)	Long questions (15 marks each)	
	4 out of 6	2 out of 3	