
Syllabus 

Sets and their Cartesian product (2), Relations, Equivalence Relations and 

Partitions (4). Mappings (4).  

Binary operation, Algebraic system with special reference to field as an example of 

an algebraic system.  

Definition, examples, properties of groups (8) , groups of n th roots of unity, 

permutation groups, group  

of residue modulo classes (5), properties relating to order of an element of a group, 

order of a group (3),  

Subgroups(3), Cyclic groups(3), Cosets (2), Lagrange’s Theorem for finite 

groups(2) 

 

 MATHEMATICS HONOURS, SEM I  

SECTION I: LECTURE NOTES ON ABSTRACT ALGEBRA 

SETS AND FUNCTIONS 

In Mathematics, we define a mathematical concept in terms of more 

elementary concept/s.For example, the definition of 

perpendicularity between two straight lines is given in terms of the 

more basic concept of angle between two straight lines. The concept 

of set is such a basic one that it is difficult to define this concept in 

terms of more elementary concept. Accordingly, we do not define set 

but to explain the concept intuitively we say:  a set is a collection of 

objects having the property that given any object,  abstract (the 

thought of getting 100%marks at the term-end examination) or 

concrete (student of semester II mathematics general having a 



particular Roll No), we can say without any ambiguity whether that 

object belongs to the collection(collection of all thoughts that came 

to one’s mind on a particular day or the collection of all students of 

this class) or not.For example, the collection of ‘good’ students of 

semester II will not be a set unless the criteria of ‘goodness’ is made 

explicit! 

(This property is called the well defined property). 

The objects of which a set A is constituted of are called elements of 

the set A.  

If x is an element of a set A, we write x∈A; otherwise x∉A. Subset: If 

every element of a set X is an element of set Y,X is a subset of Y, 

written as X ⊆	Y.  

Proper subset: X is a proper subset of Y if X ⊆	Y and Y⊈	X, written 

as	� ⊊ �.  

Equality: For two sets X = Yiff (if and only if, that is bi-implication) X ⊆Y and Y⊆X.  

Null set: A set having no element is called null set, denoted by ∅.  

Example1.1 a≠{a} (a letter inside envelope is different from a letter 

without envelope),	{a}∈{a,{a}}, {a}⊊{a,{a}}, ∅ ⊂A(the premise x∈ ∅	 
of the implication x∈ ∅	⇒ x∈ �	 is false but there does not exist any 

element in ∅ which is not in A), A⊆A, for every set A. 



Set Operations: formation of new sets 

Let X and Y be two sets. 

Union: The union of X and Y, denoted by X∪Y, is the set {a| a∈X or 

a∈Y or both}.  

Intersection: The intersection of X and Y, denoted by X∩ �, is the set 

{a| a∈X and a∈Y}.  

Difference: The set differenceof X and Y, denoted by X-Y, is the set 

{a| a∈X and a∉ Y}.  

Complement: The set difference U-X is called complement of the set 

X, denoted by X/, where U is the universal set.  

Symmetric difference: The symmetric  set differenceof X and Y, 

denoted by X��, is the set (X-Y) U(Y-X).  

Power set: For any set X, the power setof X, P(X), is the set of all 

subsets of X.  

Disjoint sets: Two sets X and Y are disjointiff X∩ �= ∅.  

Cartesian product: The Cartesian productof X and Y, denoted by Xx 

Y, is defined as the set {(x,y)| x∈X, y∈Y} [ (x,y) is called an ordered 

pair.  



Two ordered pairs (x,y) and (u,v) are equal, written (x,y) = (u,v), iff x 

= u and y = v].  

If we take X = {1,2} and Y = {3},  

then X x Y = {(1,3),(2,3)} ≠{(3,1),(3,2)} = Y xX.  

Thus Cartesian product between two distinct sets are not 

necessarilycommutative . 

(Is ∅x {1} = {1} x ∅). 

Laws governing set operations 

For sets X, Y, Z,  

� Idempotent laws: X∪ � = �, X∩X = X 

� Commutative laws: X∪Y = Y∪X, X∩Y = Y∩ � 

� Associative Laws: (X∪Y)	∪Z = X∪(Y∪Z), (X∩Y)	∩Z = X∩(Y∩ �) 
� Distributive laws: X∪(Y∩Z) = (X∪ �) ∩(X∪Z), X∩(Y∪Z) = 

(X∩ �) ∪(X∩Z) 

� Absorptive laws: X∩(X∪Y)=X, X∪(X∩Y)=X 

� De’ Morgan’s laws: X-(Y∪Z) = (X-Y)	∩(X-Z),  

X-(Y∩Z) = (X-Y)	∪(X-Z) 

Note:We may compare between usual addition and multiplication of 

real numbers on one hand and union and intersection of sets on the 

other. We see that the analogy is not complete, e.g. union and 



intersection both are distributive over the other but addition is not 

distributive over multiplication though multiplication over addition 

is. Also A∪ � = �, for all set A but a.a = a does not hold for all real a. 

Example1.2  Let A, B, C be three sets such that A∩C = B∩C and A∩C/ = 

B∩C/ holds. Prove that A = B. 

Solution: A = A∩U (U stands for the universal set concerned)  

= A∩(C∪C/)(definition of complement of a set)  

=(A∩C)	∪(A∩C/)(distributivity of ∩ ����	 ∪) 
=(B∩C)	∪(B∩C/)(given conditions) 

= B∩(C∪C/)(distributivity of ∩ ����	 ∪) 
=B 

Note: Make a habit of citing appropriate law at each step as far as practicable. 

Example1.3  Let A, B, C be three sets such that A∩B = A∩C and A∪B = 

A∪ �, then prove B = C.  

Solution: B= B∪(A∩B) = B∪(A∩ �)  

=(B∪A)	∩(B∪C)(distributivity of ∪over∩) 

= (C∪A)	∩(B∪C) = C∪(A∩B)= C∪(A∩ �) = C. 

Example1.4   A�� = ��� implies A = B: prove or disprove. 



Note: Proving any result will involve consideration of arbitrary cases, 

whereas to disprove a result it is sufficient to give a counter-

example. 

Solution: This is a true statement. We first prove A⊆B.   

Let  x∈A. 

Case 1: x∈C. Then x∉ (A-C)	∪(C-A) = A�� = ��� = (B-C)	∪(C-B). 

Thus x∉ � − � . Since x∈C , therefore x∈ �.  

Case 2: x∉C. x∈ (A-C)	⊆ A�� = ��� = (B-C)	∪(C-B). Since x∉C, x∉C-

B.Thus  x∈B-C. So  x∈ �. 

Combining the two cases, we see A⊆ �. Similarly, B⊆A. Combining, A 

= B. 

Example1.5   Prove or disprove:(A-B)/ = (B-A)/. 

Solution: This is a FALSE statement. So we give a 

counterexample:Let U = A = {1,2}, B = {1}.Then (A-B)/ = {1} ≠ (B-A)/ 

= {1,2}. 

Example1.6  Prove: [(A-B)	∪(A∩B)]	∩[(B-A)	∪(A∪B)/] = ∅  

Solution: By repeated distributivity, 

L.H.S. of the given expression 



=[(A-B)∩(B-A)]	∪[(A-B)	∩ (A∪B)/]	∪[(A∩B)	∩ (B − A)]	∪[(A∩B)	∩(� ∪ �)]	/] 

= ∅ ∪[(A-B)	∩(A/∩B/)]∪ ∅ ∪ ∅ = ∅. 

Example1.7  Prove: A�(B�C)=(A�B)	�C. 

Solution: Let x∈A�(B�C)=[A-(B�C)]	∪[(B�C)-A] 

Case1: x∈A-(B�C). x∈A, x∉ (B-C)	∪(C-B). Thus x∈A, x∉B∪C. x∈A-B, 

x∉C.Hence x∈ A�B, x∉C. Thus x ∈(A�B)-C⊆ (A�B)	�C. 

Case 2: x∈(B�C)-A. x∈ (B-C)	∪(C-B), x∉A. If x∈ (B-C), x∉A, then x∈B-

A⊆A�B, x∉C and hence x∈(A�B)-C⊆(A�B)	�C. If x∈ (C-B), x∉A, then 

x∈C, x∉B,x∉A; hence x∈C, x∉A�B and so x∈C-(A�B)	⊆(A�B)	�C. 

Combining the two cases, A�(B�C)	⊆ (A�B)	�C. Similarly other part 

can be proved. 

 

PRACTICE SUMS 

1. Prove or disprove: A∪(B-C) = (A∪B) – (A∪C) 

2. Prove or disprove: A-C = B-C iffA∪C = B∪C.(“ iff ” stands for if 

and only if) 

3. Prove :A X (B∪C) = (A X B)	∪ (A X C) 



Throughout this discussion, N,Z,Q,R,C will denote set of all positive 

integers, integers, rational numbers ,real numbers  and the complex 

numbers respectively. 

BINARY RELATIONS 

Definition1.1 A binary relation R from a set A to a set B is a subset of 

AxB. A binary relation (we shall often refer to as relation) from A to 

A is called a binary relation on A. If (a,b)∈R, we say a is R-related to 

b, written as aRb. 

Example1.7  Let A={1,2,3} and R={(1,1),(1,3)}. Then 1R3 holds but 3R1 

does not hold. 

Example1.8  Let A be a set and P(A) denote the power set of A. Given any 

two subsets X and Y of A, that is, X,Y∈P(A), either X⊆Y or X⊈Y. Thus 

⊆ is a binary relation on P(A). 

Example1.9 R={(x,y) ∈R2/ x2+y2=9} is a relation on R. 

Definition1.2 Let R be a binary relation on a set A.  

• R is reflexive iff aRa holds ∀a∈A 

• R is symmetric iff a,b∈A and aRb imply bRa 

• R is transitive iff a,b,c∈A, aRb , bRc imply aRc 

• R is an equivalence relationon A iff R is reflexive, symmetric 

and transitive. 



Example1.10 Let R be a relation defined on Z by aRb iff ab≥0. R is 

reflexive, symmetric but not transitive: -5R0 , 0R7 but -5R7 does not 

hold. 

Example1.11 Let S be a binary relation on the set R of real numbers . 

xSy iff Reflexive Symmetric Transitive 

y=2x X X X 

x<y X X Yes 

x≠y X Yes X 

xy>0 X Yes Yes 

y≠ " +2 Yes X X 

x≤y Yes X Yes 

xy≥0 Yes Yes X 

x=y Yes Yes Yes 

 

Definition 1.2Let R be an equivalence relation  on a set A. Let a∈A. 

[a]={x∈A/xRa} (⊆A) is the equivalence class determined by a with 

respect to R. 

Definition 1.3 Let A be a nonempty set andPbe a collection of 

nonempty subsets of A. Then P is a partition of A iff 

(1) for X,Y∈P, either X=Y or X∩Y=∅    and   (2) A=⋃ �%∈& . 



Theorem 1.1 : Let R be an equivalence relation  on a set A. Then (1) 

[a]≠ ∅, ∀a∈A,  

(2) b∈[a] iff [b]=[a],  

(3) either [a]=[b]or [a]	∩ [b]=∅,  

(4) A=⋃ [(])∈* .  

Thus {[a]/ a∈A} is a partition of A. 

Proof: (1) since R is reflexive, (a,a)∈R ∀ a∈A. Thus a∈[a]. Hence 

[a]≠ ∅, ∀a∈A. 

(2) if [b]=[a], then b∈[b]=[a]. Conversely, let b∈[a]. Then aRb. For 

x∈[a], xRa holds and , by transitivity of R, xRb holds, that is , x∈[b]. 

Hence [a]⊆[b]. Similarly [b]⊆[a] can be proved . Hence [b]=[a]. 

(3) Let [a]	∩ [b]≠ ∅. Let x∈[a]	∩ [b]. Then aRx, xRb imply aRb, that 

is, [a]=[b]. 

(4) by definition, [a]⊆A, a∈A. Thus,⋃ [(])∈* ⊆A. conversely, let b∈A. 

Then b∈[b]⊆⋃ [(])∈* . Thus A⊆⋃ [(])∈* .Hence A=⋃ [(])∈* . 

Theorem 1.2 :Let P be a partition of a given set A. Define a relation R 

on A as follows: 

for all a,b∈A, aRb iff there exists B∈P such that a,b∈B.  

Then R is an equivalence relation on A. 



Proof: Left as an exercise. 

Example1.12  Verify whether the following relations on the set R of real 

numbers are equivalence relations: (1) aRbiff|( − ,| > 0, (2) aRb iff 

1+ab>0, (3) aRb iff|(|≤b 

Solution: (1)R is neither reflexive nor transitive but symmetric: 1R0 

and 0R1 hold but 1R1 does not hold. 

(2) R is reflexive and symmetric but not transitive:  

3R(-
01) and (-

01)2(−6)hold but 3R(-6) does not hold. 

(3)(-2)R(-2)does not hold: not reflexive. -2R5 holds but 5R-2 does 

not: R not symmetric. Let pRq and qRs hold. Then |4|≤q≤|5|≤s imply 

pRs hold. 

Example1.13 Verify whether the following relations on the set Z of 

integers are equivalence relations:  

(1) aRb iff |( − ,| ≤ 3,  

(2) aRb iff a-b is a multiple of 6,  

(3) aRb iff a2-b2 is  a multiple of 7,  

(4) aRb iff 	|(| = |,|,  
(5) aRb iff  2a+b=41. 



Example1.14 Let X≠ ∅. Prove that the following conditions are 

equivalent:  

(1) Ris an equivalence relation on X,  

(2) R is reflexive and for all x,y,z∈X, xRy and yRz imply zRx,  

(3)R is reflexive and for all x,y,z∈X, xRy and xRz imply yRz. 

Example1.15 A relation R on the set of all nonzero complex numbers is 

defined by uRv iff 
89:8;: is real. Prove that R is not an equivalence 

relation . 

Solution: Note that iR2i, 2iR(-i) but (i,-i) does not belong to R. 

Example1.15 A relation S on R2 is defined by (a1,b1)S(a2,b2) iff 

<(0= + ,0==<(== + ,==. Prove that S is an equivalence relation and 

find equivalence class [(1,1)]. 

Definition 1.4 A function from a set A to a set B, denoted by f:  A→B, 

is a binary relation from A to B satisfying the properties: 

� For every x∈A, there exists y∈B such that (x,y)	∈f. y is called 

image of x under f and denoted by  f(x) . x is called a pre-image 

of y=f(x) under f . A is called domain and B is called the co-

domain of the correspondence.  



� Note that we differentiate between f, the correspondence, and 

f(x), the image of x under f. 

� For a fixed x∈A, f(x)	∈ � is unique. For two different elements x 

and y of A, images f(x) and f(y) may be same or may be 

different. 

In brief, a function is a binary relation under which 

� both existence and uniqueness of image of all elements of the 

domain is guaranteed but 

� neither the existence nor the uniqueness of pre-image of an 

element of co-domain is guaranteed. 

Notation: Let f:A→B. For y∈B , if y has no pre-image under f , then     

f-1({y}) =∅ , and if y has at least one pre-image under f, f-1({y})   

stands for the set of all pre-images of y. For two elements  y1 , y2 ∈ B ,       

f-1({y1 , y2})= f-1({y1})∪ f-1({y2}) . For C⊆A, f(C) = {f(c)| c∈ �}.  f(A) is 

called the range of f. 

Example1.16  Prove that f(A∩B) ⊆f(A)	∩f(B) ; give a counterexample to 

establish that the reverse inclusion may not hold. 

Solution: y∈f(A∩B)⇒y = f(x), x∈ A∩B⇒ y = f(x), x∈ A and 

x∈B⇒y∈f(A) and y∈f(B)	⇒y∈ f(A)	∩f(B). Hence f(A∩B) ⊆f(A)	∩f(B). 

Consider the counterexample: f: R→R,f(x) = x2, A = {2}, B = {-2}.  



Example1.17 Let f: R→R, f(x) = 3x2-5. f(x) = 70 implies x = ±5. Thus            

f-1{70} = {-5, 5} . Hence  f[f-1{70}] = {f(-5), f(-5)} = {70} . Also,                         

f-1({-11}) = ∅  [x∈ f-1({-11})⇒3x2-5=-11⇒x2=-2]. 

Example1.18 Let g: R→R  be defined by  g(x) = 
AAB;0. Find g-1({2}). 

PRACTICE SUMS 

Prove that (1) f(A∪B) =f(A)	∪f(B), (2) f-1(B1∪B2) = f-1(B1)	∪f-1(B2), 

(3) f-1(B1∩B2) = f-1(B1)	∩f-1(B2), (4) A⊆f-1(f(A)), f(f-1(B))⊆B. 

Definition 1.5A function under which uniqueness of pre-image is 

guaranteed is called an injective function. Thus f:A→B is injective iff 

a1,a2∈A, f(a1)=f(a2) imply a1=a2.  A function under which existence of 

pre-image is guaranteed is called a surjective function. f is surjective 

iff codomain and range coincide, that is, for every y∈B, there exists 

x∈A such that f(x)=y. A function which is both injective and 

surjective is called bijective. 

 

Note: The injectivity, surjectivity and bijectivity depends very much 

on the domain and codomain sets and may well change with the 

variation of those sets even if the functional rule remains unaltered. 

e.g.f:Z→Z, f(x) = x2is not injective though g:N→Z, g(x) = x2 is injective. 



Example1.19 f: R→R, f(x) = x2 – 3x+4. f(x1) = f(x2) implies (x1-x2)(x1+x2-3) 

= 0. Thus f(1) = f(2) though 1≠2; hence f is not injective. 

[Note: for establishing non-injectivity, it is sufficient to consider 

particular values of x]. Let y∈R and x∈	f-1{y}. Then y = f(x) = x2 – 

3x+4. We get a quadratic equation x2 – 3x+(4-y) = 0 whose roots, 

considered as a quadratic in x, give preimage(s) of y. But the 

quadratic will have real roots if the discriminant 4y-7≥0, that is , 

only when y≥7/4. Thus, for example, f-1{1} =∅. Hence f is not 

surjective. 

Example1.19 Let f :X→Y Prove that (1) f is injective iff A=f-1(f(A)), for all 

A⊆X, (2) f  is surjective iff f(f-1(B))=B, for all B⊆Y 

(1) Let  f be injective. A⊆f-1(f(A)) holds generally.  Let x∈ f-

1(f(A)). Then f(x)	∈	f(A); so f(x)=f(a) ,for some a∈A. Since f is 

injective, x=a∈A. Thus f-1(f(A))	⊆A. 

Conversely, let A=f-1(f(A)), for all A⊆X. Let y∈Y and let there 

existx∈X such that f(x)=y.    By given condition, {x}=f-1{f(x)}; 

thus x is the only preimage that f(x) has; hence f is injective. 

Definition 1.6If f:A→B and g:B→C, we can define a function g0f:A→C, 

called the composition of f and g, by (g0f)(a) = g(f(a)), a∈A. 



Example1.20  f:Z→Z and g: Z→Z by f(n) = (-1)n and g(n) = 2n. Then g0f: 

Z→Z, (g0f)(n)=g((-1)n) = 2(-1)n and (f0g)(n) = (-1)2n. Thus g0f≠ 

f0g.Commutativity of composition of functionsneed not hold. 

ASSOCIATIVITY OF COMPOSITION OF FUNCTIONS 

Theorem 1.3Let f: A→B , g: B→C and h: C→D. Then h0(g0f)=(h0g)0f. 

Proof: Both h0(g0f):A→D and (h0g)0f: A→D. For x∈A, [h0(g0f)](x) = 

h[(g0f)(x)]=h[g(f(x))] and [(h0g)0f](x)=(h0g)(f(x))=h[g(f(x))]. Hence 

[h0(g0f)](x)=[(h0g)0f](x), ∀x∈A.  

Theorem 1.4Suppose f: A→B and g: B→C. Then  

(1) if f and g are both injective, then g0f is injective 

(2) if g0f is injective, then fis injective 

(3) if f and g are both surjective, then g0f is surjective 

(4) if g0f is surjective, then g is surjective 

Proof: Left as an exercise. 

Definition1.7Let f: A→A. Define f0(a)=a, f1(a)=f(a), fn+1(a)=(f0fn)(a) 

for all a∈A and for all natural number n. 

Lemma 1.1Let f: A→A be injective. Then fn: A→A is injective for all 

natural number n. 



Proof: If possible, let there exists positive integer n such that fn is not 

injective: let k be the smallest such positive integer(by well-ordering 

property of N).  

Thus there exist a,b∈A, a≠b such that fk(a)=fk(b) holds.  

Now fk(a)=fk(b) 

⇒f[fk-1(a)]=f[fk-1 (b)] 

⇒fk-1(a)=fk-1 (b) (since f is injective) 

⇒a=b (since fk-1 is injective),  

which contradicts the assumption that a≠b . Hence the proof. 

Theorem 1.5Let A be finite and f: A→A be injective. Then f is surjective. 

Proof: Let a∈A. Let B={a, f(a),f2(a),…}⊆A. Since A is finite, there exist 

positive integers r and s such that r>s and fr(a)=fs(a). By injectivity 

of fs, fr-s(a)=a. If r-s = 1, a∈ f-1{a}. If r-s>1, then fr-s-1(a) is a pre-image 

of a under f. Hence the result. 

Definition 1.8Let f:A→B. f is called left(right) invertibleif there exists 

g:B→A (resp. h:B→A) such that g0f=IA(resp. f0h=IB). f is invertible iff  

f is both left and right invertible. 



Example1.21 (1) Let f, g :N→N , f(n)=n+1; g(1)=1, g(n)=n-1 for n>1. Then 

g0f=IN. But (f0g)(1)=2; so f0g≠IN. Thus g is a left but not a right 

inverse of f. 

(2) Let f:Z→E (E is the set of all even nonnegative integers), 

f(x)=x+|"| and g:E→Z,  g(x)=x/2. Then f0g=IE but (g0f)(-1)=0 hence 

g0f≠IZ. Hence g is right but not left inverse of f. 

(3) Let f,g: R→R, f(x)=3x+4, g(x)=
A9GH . Then g0f = f0g=IR. Thus g is 

both left and right inverse of f. 

Note If g:B→A and h:B→A be a left inverse and a right inverse of 

f:A→B, then g=h , for g=g0IB=g0(f0h)=(g0f)0h=IA0h=h. as we shall see 

below, a function may have many left (right) inverses without 

having any right(left respectively) inverse. 

Theorem 1.6Let f:A→B. Then (1) f is left invertible iff f is injective, (2) f is 

right invertible iff f is surjective (3) f is invertible iff f is bijective. 

Proof: (1) Let f be left invertible.  

Then there exists g:B→A such that g0f=IA. Then 

    f(a1)=f(a2),a1,a2∈A ⇒g(f(a1))=g(f(a2)) 

⇒(g0f)(a1)=(g0f)(a2) 

⇒IA(a1)=IA(a2) 



⇒a1=a2.  Hence f is injective. 

 Conversely, let f be injective. Fix a0∈A.  

Define g:B→A by : g(b)=a, if a be the unique  preimage of b under f  

(byinjectivityof f, if preimage of b exists under f, it is unique)   

and g(b)=a0,if b has no preimage under f.  

Clearly g:B→A is a function and (g0f)(a)=g(f(a))=a =IA(a),∀a∈A 

                                                                                   (by the definition of g)                                                                         

Hence g is a left inverse of f. 

Example1.22 Verify whether the following functions are injective and/or 

surjective:(i)f:R→R, f(x) = x|"|, (ii)f: (-1,1)	→R, f(x) = 
A0;|A|. 

Example1.23Let f:A→B. Prove that (1) f is injective iff X=f-1(f(X)) for all 

X⊆A, (2) f is surjectiveiff f(f-1(Y))=Y for all Y⊆B, (3) if f is injective, 

then f (Y-Z)⊆f(Y)-f(Z) for Y,Z⊆A. 

Example1.24 Prove that f(X∪Y)=f(X)∪f(Y), f(X∩Y)⊆f(X)	∩f(Y); give 

counterexample to show that the inclusion may be strict (f:R→R, 

f(x)=x2, X={2},Y={-2}). 

Definition 1.9 Let f:A→B be a bijective function. We can define a 

function f-1: B→ A by f-1(y) = x iff f(x) = y. Convince yourself that 

because of uniqueness and existence of preimage under f( since f is 



injective and surjective), f-1 is indeed a function. The function f-1 is 

called the inverse functionto f.  

Example1.25 Let f: (0,1)	→(1/2,2/3) be defined by f(x) = 
A;0A;=. Verify that f 

is bijective. 

[explanation:f(x)=f(y)⇒A;0A;==I;0	I;=⇒x=y.		
Next	let	c	∈(1/2,2/3).		

If	possible,	let	x	be	a	pre-image	of	c	under	f,	that	is,	f(x)=c.		

Then	c=
A;0

A;=
	implying	x=

09=`

`90
∈(0,1)		

since	-1/2<c-1<-1/3,	-1/3<1-2c<0.		

f-1: (1/2,2/3)	→ (0,1)is to be found.  

Now, let f-1(y) = x,y∈ (1/2, 2/3).  
Then f(x) = y. 

 So 
A;0A;==y and hence x = 

09=II90  = f-1(y). 

BINARY OPERATIONS 

Definition 1.10 Let A≠∅. A binary operation‘0’ on A is a function from 

Ax A to A. In other words , a binary operation ‘0’ on A is a rule of 

correspondence that assigns to each ordered pair (a1,a2)∈ A x A, 



some element of A, which we shall denote by a1 0a2. Note that a1 

0a2need not bedistinct from a1 or a2. 

Example1.26 Subtraction is a binary operation on Z but not on N; 

division is a binary operation on the set Q* of all nonzero rational 

number but not on Z. 

Definition 1.11 Let 0be a binary operation on A≠∅.  

(A,0)is called a mathematical system.  

0 is commutative iff x0y = y0x holds ,for all x,y∈A.  

0 is associativeiff x0(y0z) = (x0y)0z holds for all x,y,z∈A.  

An element e∈A is aleftidentity of the system (A,0) iff e0x = x holds ∀x∈A.  

An element e∈A is a right identity of the system (A,0) iff x0e = x holds ∀x∈A.  

An element in a system which is both a left and a right identity of the 

system is called anidentityof the sytem.  

(A,0) be a system with an identity e and let x, y∈A such that x0y = e 

holds. Then y(x) is called aright inverseto x(x is a left inverseof y 

respectively) in (A,0).y	∈	A is an inverse to x∈A iff x0y=y0x=e. 



Example1.27 Consider the system (R,0) defined by x0y = x, ∀x,y∈R (R 

stands for the set of real numbers). Verify that 0 is non-commutative, 

associative binary operation and that (R,0) has no left identity 

though(R,0) has infinite number of right identity. 

Example1.28 Verify that subtraction is neither associative nor 

commutative binary operation on Z. (Z,-) does not have any identity. 

Example1.29 Consider the system (Z,*) where the binary operation  * 

is defined by a*b = |( + ,|, a,b∈Z. Verify that * is commutative but 

not associative [ note: to show that *is not associative, it is sufficient 

to give an example, say,                            {(-1) *2}*(-3)≠(-1) *{2*(-3)}].  

(Z,*) does not have an identity. 

Example1.30 (R,+) is commutative, associative, possesses an 

identity element 0 and every element of (R,+) has an inverse in 

(R,+). 

Note: From examples 1.12 to 1.15 it is clear that associativity and 

commutativity of a binary operation are properties independent of 

each other, that is, one can not be deduced from the other. 

Example1.31 Let 2Z denote set of all even integers. 2Z, under usual 

multiplication, form a system which is associative, commutative but 

possesses no identity. 



Example1.32 Let M2(Z) =bc( ,d ef |	(, ,, d, e ∈ �g . M2(Z) under usual 

matrix addition forms a system which is commutative, associative. 

(M2(Z),+) possesses an identity, namely the null matrix, and every 

element in (M2(Z),+) has an inverse in (M2(Z),+). 

Example1.33 Let GL(2,R) denote the set of all 2x2 real non-singular 

matrices under usual matrix multiplication. The system is 

associative, non-commutative, possesses an identity and every 

element has an inverse in the system. 

 

SEMIGROUP, MONOID AND GROUP 

Definition 1.12A nonempty setS with an associative binary 

operation ‘.’defined on S forms a semigroup. A semigroup M that 

contains an identity element is called a Monoid . A monoid in which 

every element is invertible is called aGroup . Thus (G,.) is a group iff 

following conditions are satisfied:  

(1) .is associative,  

(2) (G,.) has an identity element, generally denoted by e and 

 (3) every element x∈G has an inverse element x-1∈G.  

If, in addition, (G,.) is commutative , (G,.) is an abelian group. 



Note: x-1 is not to be confused with 1/x, which may be a meaningless 

expression keeping the generality of the underlying set into 

account.If the group operation is denoted by ‘+’, then inverse of x is 

denoted by – x. 

Example1.34 Verify whether (Z,0) defined by a0b = a+b – ab (usual 

operations on Z on the RHS) forms a group. 

» (a0b)0c = (a+b – ab)0c = (a+b – ab)+c – (a+b-ab)c = a+b+c – ab – bc 

– ca+ abc 

a0(b0c) = a0(b+c – bc) = a+(b+c – bc) – a(b+c – bc) = a+b+c – ab – bc – 

ca+abc. 

So, (a0b)0c = a0(b0c), for a,b,c∈Z. Thus (Z,0) is associative. 

Clearly, a00 = 00a = a, ∀a∈Z. Thus (Z,0) possesses an identity 0∈Z. 

Let a∈z and b∈Z be an inverse to a. by definition, a0b = b0a = 0. Thus 

a+b – ab = 0. Hence , for a≠1, b = a/(a-1). But , in particular, for a = 3, 

b = 3/2∉Z. Hence (Z,0) does NOT form a group. 

Example1.35 Verify whether (R,0) defined by a0b =|(| + |,|, a,b∈R 

forms a group. 

» Verify that(R,0) is associative and commutative. If (R,0) has an 

identity e∈R, then a0e = e0a = a holds for all a ∈R. Thus |(| + |�| = a. 



hence |�| = a - |(|<0 for a<0, contradiction. Hence (R,0) has no 

identity element and hence does not form a group. 

Example1.36 Let A≠ ∅ and X={f/f:A→B}. The system (X,0) where 0 is 

composition of functions, is associative but not commutative if A 

contains at least three elements. 

Example1.37 Let n be a natural number. Define a binary relation S 

on Z by:aSbiff a-b=nk, ∃k∈Z. S is an equivalence relation and the set 

of equivalence classes Zn= {[0],[1],…,[n-1]} form a partition of Z, 

where [r] = {nk+r/ k∈Z}. define a binary operation +n on Zn by: 

[r]+n[s]=[r+s], ∀[r],[s]∈Zn. the definition is meaningful :If [r]=[r1] 

and [s]=[s1], then r=nk+r1 and s=nm+s1 and hence 

r+s=(k+m)n+(r1+s1) so that [r+s]=[r1+s1]. +n is associative: 

([r]+n[s])+n[t]=[r+s]+n[t]=[(r+s)+t]=[r+(s+t)]=[r]+n([s]+n[t]). [0] is 

an identity in (Zn,+n). inverse of [0] is [0] and inverse of [r] is [n-r], 

0<r<n. Thus (Zn,+n) is an anabelian group. 

Example1.38 Let n be a prime integer and let Zn={[1],[2],…,[n-1]}. 

Define [r].n[s]=[rs]. Definition is meaningful: [r]=[r1] and [s]=[s1] 

imply r=kn+r1,s=mn+s1,∃k,m∈Z, so that rs=n(mr1+ks1+kmn)+r1s1 

implying [rs]=[r1s1]. Associativity of .n follows from associativity of 

..[1] is an identity of (Zn,.n). Let [r]∈Zn, 1≤r<n. since n is prime, r and 

n are relatively prime so that there exist integers p,q such that 



1=pr+qn. Thus [1]=[pr+qn]=[pr]=[p].n[r]=[r].n[p] implying [p] is an 

inverse of [r]. hence (Zn,.n) is an abelian group. 

Note: If n is not prime, (Zn,.n) is not a group: if 1<p<n,1<q<n,n=pq , 

p,q natural, then [p],[q]∈Zn but [pq]=[n]=[0]∉Zn. 

Example1.39 Let X≠ ∅ and S(X) be the set of all bijective functions 

from X onto X. Then (S(X),0)is a group. If X contains at least three 

elements, then S(X) is not commutative. Consider f,g∈ S(X) defined 

by f(a)=a, f(b)=c,f(c)=b; g(a)=b,g(b)=a,g(c)=c. Then (f0g)(a)≠(g0f)(a). 

Hence f0g≠g0f. 

Example1.40 consider the group GL(2,R), the set of all 2x2 real 

nonsingular matrices with usual multiplication of matrices. GL(2,R) 

is non-commutative. 

PRACTICE SUMS 

Verify whether following system forms group or not: 

(1) (Z,0) , a0b = a|,|, a,b∈Z 

(2) (Z,0) , a0b = a+b+2 

(3) (2Z+1,*), a*b = a+b-1 [2Z+1 stands for set of all odd 

integers] 

(4) Let S≠ ∅ and P(S) be the power set of S. Consider 

(P(S),∩). 

(5) Let S≠ ∅ and P(S) be the power set of S. Consider (P(S),�). 



(6) Let Q[i2] = {a+√2 b| a,b∈Q}. consider (Q[i2]-{0},.) 

 

Elementary properties of Group 

Theorem 1.7 Let (G,.) be a group. The following properties hold: 

(1) If G has a left identity e and a right identity f, then e=f.    In 

particular, identity element in G is unique. 

(2) If an element x of G has a left inverse y and a right inverse 

z, then y=z. In particular, x-1, inverse element to x, is unique. 

(3) e-1 = e, (x-1)-1 = x, ∀x∈G. 

(4) (Cancellation Laws) for a,b,c∈G, 

a.c = b.c⇒a = b(right cancellation property) 

c.a = c.b⇒a = b(left cancellation property) 

       (5) (a.b)-1 = b-1.a-1, a,b∈G. 

Proof: (1) Let e,f be two identities of (G,.). Then e = e.f (f is a right 

identity element) = f (e is a left identity element). 

(2)  y.x = e and x.z = e. Then y = y.e = y.(x.z) = (y.x).z = e.z = z. Hence 

x-1, inverse element  for given x is unique. 

(3) Since e.e= e and x.x-1=x-1.x= e, it follows from definition of 

identity and inverse element. 



(4) a.c = b.c⇒(a.c).c-1 = (b.c).c-1⇒a.(c.c-1) = b.(c.c-1) (associativity) ⇒a.e = b.e⇒a = b.  

(5) (a.b).(b-1.a-1) =a.(b.b-1).a-1 = (a.e).a-1 = a.a-1 = e.  

Similarly(b-1.a-1).(a.b) = e. Hence the result follows. 

Notation: Let G be a group, a∈G, n∈Z.  

Then  a0=e(identity),  an =(( a.a)…a) ,  ( n times, n∈ k),                           

a-n = (a-1).(a-1)…(a-1) , (n times, -n∈N). 

Example1.41 Let (G,.) be a group such that (a.b)-1 = a-1.b-1, ∀a,b∈G. 

Prove that G is abelian. 

»For all a,b∈G, (a.b)-1 =a-1.b-1 = (b.a)-1.  Hence    a.b = [(a.b)-1]-1 = 

[(b.a)-1]-1 = b.a, ∀a,b∈G. 

Example1.42 Let (G,.) be a finite abelian group and G={a1,a2,…,an}. 

Let x = a1.a2….an∈ G. Prove that x2 = e. 

» using commutativity and associativity of (G,.), x2 can be expressed 

as finite product of pairwise product of pair of elements of G, each 

pair consisting of elements which are mutually inverse to each 

other. Hence the result. 

Example1.43  Let G be a group such that a2 = e, for all a∈G. Prove 

that G is abelian. 



»  For a∈ l,a.a = a2=e = a.a-1⇒ a = a-1⇒a.b = a-1.b-1 = (b.a)-1 = b.a, for 

a,b∈G. Hence. 

Example1.44 Let G be a group such that for a,b,c∈ l , a.b = c.a 

implies that b = c. Show that G is abelian. 

» (a.b).a = a.(b.a), for a,b,c∈G (by associativity)⇒a.b = b.a 

Example1.45 Prove that  G is abelianiff (a.b)2 = a2.b2, ∀a,b∈G. 

» Sufficiency: a.(b.a).b = (a.b)2 = (a.a)(b.b) = a.(a.b).b⇒b.a = a.b for 

a,b∈G. 

Necessity: If G is abelian, then (a.b)2 = (a.b).(a.b) = a.(b.a).b = 

a.(a.b).b = (a.a).(b.b) = a2.b2. 

Theorem 1.8A semigroup (S,.) is a group iff (1) ∃e∈S,∀a∈S such that 

e.a=a and (2)∀a ∈S,∃b∈S such that b.a=e 

Proof: Let Sbe a semigroup which satisfies conditions (1) and (2). 

Let a∈S. By (2), corresponding to a∈S, there exists b∈S such that 

b.a=e. For b∈S, by(2), there exists c∈S such that c.b=e. now, 

a=e.a=(c.b).a=c.(b.a)=c.e and a.b=(c.e).b=c.(e.b)=c.b (by(1))=e. hence 

a.b=b.a=e(b is not still the inverse to a!). Also, 

a.e=a.(b.a)=(a.b).a=e.a=a. Thus a.e=e.a=a,∀a∈S. Thus e∈S is an 

identity and b ∈S is an inverse of a∈S. Thus (S,.) is a group. Converse 

part follows from definition of a group. 



Example1.46 Let J=bc" m" mf , ", m ∈ R, x + y ≠ 0g. Show that J is a 

semigroup under matrix multiplication . Show that J has a left 

identity and each element of J has a right inverse. 

c1 01 0fis a left identity. Let c" m" mf ∈J. o 0A;I 0
0A;I 0pis a right inverse of 

c" m" mf. 

Theorem 1.9Asemigroup(S,.) is a group iff∀a,b∈S, the equations 

a.x=b and y.a=b have solutions for x and y in (S,.). 

Proof: Let a∈S. The equation x.a=a has a solution ,say,u∈S. Then 

u.a=a.Let b∈S. The equation a.x=b has solution,say,c∈S. Thus a.c=b. 

Now u.b=u.(a.c)=(u.a).c (associativity in (S,.))=a.c=b. Since b∈S was 

arbitrary, u∈S is a left identity in (S,.). Again, the equation y.a=u has 

solution , say d∈S. Then d∈S is a left inverse of a in S. Thus (S,.) is a 

group, by previous theorem.Converse part is obvious. 

Theorem 1.10 A finite semigroup (S,.) is a group iff (S,.) satisfies both 

the cancellation laws: for a,b,c∈S, a.b=a.c⇒b=c (left cancellation law) 

and b.a=c.a⇒b=c(right cancellation law). 

Proof: Let (S,.) be a finite semigroup in which both the cancellation 

laws hold. By previous theorem, it is sufficient to show that the 

equations a.x=b and y.a=b have solutions in S, ∀a,b∈S. Let 



S={a1,…,an}. Let a,b∈S. clearly A={a.a1,…,a.an}⊆S. Also all the 

elements of A are distinct by left cancellation law. Thus A and S 

contains same number of elements and A⊆S. Hence A=S. Thus b ∈S=A={a.a1,…,a.an}. Hence b=a.ai, for some i,1≤i≤n. Thus a.x=b has 

solution in S,∀a,b∈S. Similarly,x.a=b has solution in S,∀a,b∈S. Hence 

(S,.) is a group. Converse part is trivial. 

Note:In a semigroup, cancellation laws may or may not hold. In 

(N,+), cancellation laws hold. In the semigroup S of all 2x2matrices 

over integers under multiplication, for 

A=c1 00 0f,B=c0 00 1f,C=c0 01 0f, AB=AC holds but B≠C. 

Definition 1.13 Let (G,.) be a group, a∈G, n∈Z. a0=e;an=a.an-1, if  n∈N; 

an=(a-1)-n, if -n∈N. 

Definition 1.14Let (G,.) be a group and a∈G. If there exists positive 

integer n such that an=e, then the smallest such positive integern is 

the order of a, denoted by 0(a). If no such positive integer exist, then 

a is of infinite order. 

NoteIn a group G, the only element of order 1 is identity. All 

elements in a finite group must be of finite order. 

Example1.47(R,+)is  an infinite groupin which  all elements other 

than 0 are of infinite order. (P(R),∆) is an infinite group in which all 

nonidentity elements are of order 2: that is, every element is of finite 



order. In (Z6,+6), elements [0],[1],[2],[3],[4],[5] have respective 

orders 1,6,3,2,3,6. 

Theorem 1.11 Let G be a group and a∈G such that 0(a)=n. Then (1) if 

am=e for some positive integer m, then n divides m, (2) for every 

positive integer t, 0(at)=
qrst	(u,q). 

Proof(1) By division algorithm of integers, ∃q,r∈Z such that m=nq+r, 

where 0≤r<n. Now ar=am-nq=am.(an)q=e. Since n is the smallest 

positive integer such that an=e and ar=e for 0≤r<n, it follows that 

r=0.Thus m=nq, that is, n divides m. 

(2) Let 0(at)=k. then akt=e. By (1), n divides (kt). Then there exists 

r∈Zsuch that kt=nr.Letgcd(t,n)=d. then ∃u,v∈Z such that t=du, n=dv 

and gcd(u,v)=1. Now kt=nr implies ku=rv. Thus v divides (ku). Since 

gcd(u,v)=1, v divides k. thus n/d divides k. Also,  

(at)n/d=(vwx = (q8 = ((q)8 = �. Since 0(at)=k, k divides n/d. since k 

and n/d are positive integers, k=n/d. Hence, 0(at)=
qrst	(u,q). 

Example1.48 In a group of even order, there exists at least one 

nonidentity element of order 2. 

» Let A={g∈G/g≠g-1}⊆G. Then e∉ A and g∈ A implies g-1∈A. Thus 

A=⋃ {z, z90}{∈* . Hence number of elements of A is even and so 

A∪{e} contains odd number of elements. Since the number of 



elements of G is even, there exist g∈G such that g∉A∪{e}, so that 

,g=g-1 and g≠e. thus 0(g)=2. 

Example1.49 Let G be a group and a,b∈G, a2=e,a.b.a=b7. Prove b48=e. 

»b=a2ba2=ab7a=(aba)7=b49. Result follows by cancellation law. 

Example1.50 Let S be a semigroup such that for all a∈S, there exist 

x∈S such that a=a.x.a. If S has a single idempotent element, prove 

that S is a group. 

»Let the single idempotent of S be denoted by e. Let a∈S. Then there 

exist x∈S such that a=axa so that ax=axax=(ax)2. Thus ax is an 

idempotent in S and by the uniqueness of idempotent  in S, ax=e. 

Similarly it can be shown that xa=e. Hence a=a(xa)=a.e and 

a=(ax)a=ea. Thus e is an identity in S. Let b∈S. then there xeisty∈S 

such that b=byb. Hence by and yb are idempotent and so by=yb=e. 

Hence S is a group. 

Example1.51 Let G be a group and (a.b)n=an.bn holds for alla,b in G 

and for three consecutive integers n. Prove that G is commutative. 

» let (ab)n=anbn, (ab)n+1=an+1bn+1, (ab)n+2=an+2bn+2,∀a,b∈G. 

Then an+1bn+1=(ab)n+1=(anbn)(ab)⇒abn=bna. 

Againan+2bn+2=(ab)n+1(ab)=an+1bn+1ab⇒abn+2=bn+1ab=b(bna)b=b(abn)

b⇒ab=ba. Hence. 



Example1.52 Let G={a1,…,an} be a finite abelian group and 

x=a1…an∈G. Prove that x2=e. 

»using commutativity and associativity, x2=(a1…an)(a1…an)can be 

expressed as finite products of expressions like (ai.(|}), where ai and 

(|}  are inverse to each other. Hence ai.(|}=e and thus x2=e. 

Example1.53 Let G be a group and x,y∈G such that xy2=y3x, yx2=x3y. 

Prove x=y=e. 

» xy2=y3x⇒x=y3xy-2⇒x2=xy3xy-2=(xy2)yxy-2=(y3x)yxy-2⇒x2y=y3xyxy-

1(1). Now yx2=x3y⇒yx2=xy3xyxy-1⇒x2=y-1xy3xyxy-1⇒x2y=y-1xy3xyx 

(2). By (1) and (2), y3xyxy-1=y-

1xy3xyx⇒y4xyx=xy3xyxy⇒y4xyx=xy2yxyxy=y3 (xy)3⇒(yx)2=(xy)2(3). 

Interchanging x and y in (3),we get (xy)2=(yx)3 (4). Now (3) and (4) 

imply (xy)2=(yx)3=(yx)2(yx)=(xy)3(yx)⇒e=xy2x⇒x-2=y2. Further 

xy2=y3x⇒xx-2=yx-2x⇒x-1=yx-1⇒y=e. finally, yx2=x3y⇒ex2=x3e⇒x=e. 

Example1.54Let S be a finite semi-group. Show that there is an 

idempotent element e inS . 

» Let x∈S. Since S is finite, all the elements x,x2,x3,… cannot be 

distinct. Thus there exist integers m,n, m>n, such that xm=xn. Thus 

there exists integer k such that xn+k=xn. Now x2n+k=xn+k.xn=x2n. By 

induction, xtn+k=xtn for any t∈N. Also xtn+2k=xtn+k=xtn. By induction, 



xtn+lk=xtn, for any l∈N. In particular, xkn+nk=xkn, that is, e2=e, where 

e=xkn∈S. 

Example Let G be a group, a,b∈G. Let (ab)3=a3b3 and (ab)5=a5b5. 

Prove that ab=ba. 

»(ab)3=a3b3⇒a(ba)2b=a3b3⇒(ba)2=a2b2. Interchanging a and b, 

(ab)2=b2a2 (1)   Again, 

(ab)5=a5b5⇒(ab)3(ab)2=a5b5⇒a3b3b2a2=a5b5⇒b5a2=a2b5(2) 

Now 

(ab)4=(ab)3(ab)⇒a(ba)3b=a3b3ab⇒(ba)3=a2b3a⇒b3a3=a2b3a⇒a2b3=b

3a2(3).From (2), b3b2a2=a2b3b2=b3a2b2( from 

(3))⇒b2a2=a2b2⇒(ab)2=a2b2 (from (1))⇒a(ba)b=a(ab)b⇒ab=ba. 

Example1.55Prove that a finite semigroup G with identity is a group 

iff G contains only one idempotent. Give a counterexample to show 

that if we drop the requirement of G possessing identity, then G 

need not be a group. 

» consider the semigroup {[0],[2]} under +4. 

Example1.56 If G is  a group in which (ab)2=a2b2 holds ∀a,b∈G, then 

G is abelian. Give example to show that the result does not hold for 

semigroup. 



» consider the semigroup (S,.), where S is any nonempty subset and 

a.b=a,∀a,b∈S. Then S is not a group though (ab)2=a2b2 holds ∀a,b∈S. 

Example1.57 Show that if G is a finite semigroup with cross-

cancellation law, that is, xy=yz implying x=z, for all x,y,z in G, then G 

is an abelian group. 

»xy=xz⇒x(yx)=(xz)x⇒yx=xz⇒y=z. similarly right cancellation law 

holds. Hence G is a group. Also (xy)x=x(yx) imply xy=yx, for all x,y in 

G. 

Example1.58 Let Sbe a semigroup and for all x,y in S, x2y=y=yx2 hold. 

Prove that S is an abelian group. 

»Fix x1∈S.For all y∈S, x1
2y=yx1

2=y; hence x1
2 is identity of S,say, e. 

Thus x2=e, for all x∈S.Hence x=x-1; thus every element has an inverse 

in S. Since x2=e, for all x∈G, the group is abelian. 

Example1.59 Let G be a group and a,b∈G such that a.b=b.a and 0(a) 

and 0(b) are relatively prime. Then prove that 0(ab)=0(a)0(b). 

»Let 0(a)=m,0(b)=n,0(ab)=k. So (ab)mn=(am)n(bn)m=e; hence k/(mn). 

If k=mn, nothing remains to prove. Let mn=qpk, q positive integer 

and p be prime. Since p/(mn) , either p/m or p/n; say p/m.Let 

m=pm1. Now mn=qpk implies m1n=qk. e=(ab)k=(ab)qk=(ab)m
1

n 

=am
1

n.(bn)m
1=am

1
n. Hence m/(m1n), that is , (pm1)/(m1n). Thus p/n. 

But then p is a common factor of m and n, contradiction.  



Example1.60 Find the number of elements of order 5 in (Z20,+20). 

»Let 0([a])=5. Then 5 is the smallest positive integer such that 

[0]=5[a]=[5a], that is, 20 divides 5a-0=5a. Thus 4 must divide 

a,0≤a<20. Hence [a]=[4],[8],[12]or[16]. 

Example1.61 Suppose a group G contains elements a,b such that 

0(a)=4,0(b)=2, a3b=ba. Find 0(ab). 

»a3b=ba⇒e=a4b2=(ab)2⇒0(ab)≤2. If 0(ab)=1, then ab=e, a=b-1, 

implying 4=0(a)=0(b)=2, contradiction. 

 

Permutation Groups 

Definition 1.15 Let A≠ ∅. A permutation on A is a bijective mapping 

of A onto itself. If A={1,2,…,n}, then the group Sn formed by the set of 

all permutations on A under composition of functions as 

composition is called Symmetric Group on n symbols . Order of Sn, 

that is , the number of elements of Sn , is n! 

N o t a t i o n If~∈Sn, then we often denote ~ using two-row 

notation:~ = � 1			 			2							 ⋯ �
~(1) ~(2)⋯ ~(�)�. In this notation, if  



~ = � 1			 			2							 ⋯ �
~(1) ~(2)⋯ ~(�)�and = � 1			 			2							 ⋯ �

�(1) �(2)⋯ �(�)�, 

then ~0	�=� 1			 			2							 ⋯ �
�(~(1)) �(~(2))⋯ �(~(�))�. 

Theorem 1.12 If n is a positive integer ,n≥3, then  Sn is a 

noncommutative group. 

Definition 1.16 A permutation ~ on {1,2,…,n} is a k-cycle iff there 

exist distinct elements i1,…,ik∈{1,2,…,n} such that ~(i1)=i2,…,~(ik-

1)=ik, ~(ik)=i1 and ~(") = " for all x∈{1,2,…,n}-{i1,…,ik}.we denote ~by (i1  i2  …ik).A transposition is a 2-cycle. 

NoteProduct of two cycles need not be a cycle:for~=(5  6) and �=(3 

2  4), ~0� is not a cycle. 

Definition 1.17Two cycles (i1…im) and (j1…jk) are disjoint iff 

{i1,…,im}∩{j1,…,jk}=∅. 

Theorem 1.13Let ~ and � be two disjoint cycles. Then ~0�=�0~. 

Theorem 1.14 Any nonidentity permutation of Sn (n≥2) can be 

expressed as a product of disjoint cycles , where each cycle is of 

length ≥2. 

Theorem 1.15 Any cycle of length≥2is either a transposition or can 

be expressed as a product of transpositions. 



Proof Note that (i1  i2…ik)=(i1ik)0(i1 ik-1)0…0(i1 i2). 

Theorem 1.16Any nonidentity permutation is either a transposition 

or can be expressed as a product of transpositions. 

Definition 1.18A permutation~ is even(odd) iff ~ can be expressed 

as product of even (odd respectively)number of transpositions. 

Theorem 1.17 Any permutation in Sn is either an even permutation 

or an odd permutation but never both. 

NoteIdentity permutation I is even since I=(1 2)0 (2 1). If ~ is even, 

then ~-1 is even, since ~0~-1=I and I is even. Thus An, the set of all 

even permutations on {1,2,…,n}, forms a group under composition of 

functions. An is called the alternating group. 

Theorem 1.18Let n≥2 and ~∈Sn be a cycle. Then ~ is a k-cycle iff 

0(~)=k. 

Theorem 1.19 Let ~∈Sn, n≥2, and ~=~1 0…0~k be a product of disjoint 

cycles. Let 0(~i)=ni, i=1,2,…,k. then 0(~)=lcm{n1,n2,…,nk}. 

Example1.62 Show that the number of even permutations in Sn is 

same as the number of odd permutations in Sn. 

ProofDefine f:An→(Sn-An) by f(~)=~0 (1 2). Verify that f is bijective. 

Example1.63 If ~∈S7 and ~G=(2 1 4 3 5 6 7), then find ~. 



»7=0(~G)= �(�)rst	{G,�(�)}. Thus 0(~)=7,14,28. Now ~ is expressible as  

product of disjoint cycles in S7. Thus 0(~)≠14,28. Hence 0(~)=7. 

Thus ~7=I. Thus ~=~8=(~4)2=(2 1 4 3 5 6 7)0(2 1 4 3 5 6 7). 

Example1.64 If ~=(1 2 3)0(1 4 5), write ~11 in cycle notation. 

»~� = �.Thus ~0��=I and hence ~11=~90=(4 1 3 2 5). 

Example1.65 In S6, let ~=(1 2 3) and �=(4 5 6). Find a permutation x 

in S6 such that x~x-1=�. 

»x0 (1 2 3)=(4 5 6)0x. 

Attempt 1: x(1)=1.Then [(4 5 6)0x](1)=1=[x0(1 2 3)](1)=x(2), 

contradiction. 

Attempt 2: x(1)=2. Then 2=[(4 5 6)0x](1)=[x0(1 2 3)](1)=x(2), con. 

Attempt 3: x(1)=3. Then 3=[(4 5 6)0x](1)=[x0(1 2 3)](1)=x(2), con. 

Attempt 4: x(1)=4. [(4 5 6)0x](1)=5=[x0(1 2 3)](1)=x(2). 6=[(4 5 

6)0x](2)=[x0(1 2 3)](2)=x(3). Since x is a bijection, x(4),x(5),x(6) will 

be one of 1,2,3. Thus, [(4 5 6)0x](4)=x(4)=[x0(1 2 3)](4), 

automatically satisfied. Thus x({4,5,6})={1,2,3}. Hence one choice for 

x is: x(1)=4,x(2)=5,x(3)=6,x(4)=1,x(5)=2,x(6)=3. 

Example1.66 Find the number of elements of order 3 in A4. 



»Let x∈A4,0(x)=3. Let x=x1 0 x20…0xk be an expression of x in terms of 

disjoint cycles; hence 3=0(x)=l.c.m.{0(x1),…,0(xk)}. Thus 0(xi)=1 or 3. 

Since we can drop 1-cycle from the representation, x can be 

expressed as composition of disjoint 3-cycles; since there are only 4 

symbols , x is a 3-cycle. For every choice of three symbols from 

{1,2,3,4}, there will be two 3-cycles[ for example, for symbols 1,3,4, 

(1 3 4) and (1 4 3)are 2  3-cycles). Hence the number is 8. 

Example1.67 Find the number of elements of order 6 in S4. 

Example1.68 Find the number of elements of order 2 in A4. 

SUBGROUP 

Let (G,0) be a group and ∅ ≠H⊆G. H is closed under 0iff∀ h1,h2∈H, 

h10h2∈H. If H be closed under 0, then the restriction of 0 to H x H is a 

mapping from H x H into H. Thus the binary operation 0 on G induces 

binary operation, also denoted by 0, on H. 

Definition 1.19Let (G,0) be a group and ∅ ≠H⊆G. (H,0) is a subgroup 

of (G,0) iff H is closed under 0 and (H,0) is a group. 

Every group G has at least two subgroups , namely, {e} and G. These 

are called trivial subgroups. Other subgroups, if there be any, are 

called nontrivial subgroups of G. 



Example1.69 (2Z,+) is a subgroup of (Z,+) , where 2Z is the set of all 

odd integers. Since the set 2Z+1 of all odd integers is not closed 

under addition of integers, (2Z+1,+) is not a subgroup. Though N is 

closed under addition, (N,+) does not form a group; hence (N,+) is 

not a subgroup of (Z,+). 

Example1.70 (An,0) is a subgroup of (Sn,0). {[0],[2]} is a subgroup of 

(Z4,+4).  

Example 1.71 {z∈C/|�| = 1} is a subgroup of the multiplicative 

group of all nonzero complex numbers. 

Theorem 1.20 All subgroups of a group (G,0) have the same identity 

element. If H be a subgroup of a group G, a∈H and aG
-1,aH

-1 be the 

inverses of a in G and H respectively, then aG
-1=aH

-1. 

Proof: Let eG and eH be the identities of G and H respectively. Then eH 

0 eH=eH (consideringeHas identity in (H,0) )   

=eH0eG (since eH∈H⊆G and eG is identity in (G,0) )  

So by cancellation property in (G,0) ,eH= eG. 

Using cancellation property of G, from the equality 

a .aG
-1=eG=eH=a.aH

-1, we conclude that  aG
-1=aH

-1. 

Note: ⋂{H:H	is	a	subgroup	of	G} ≠ ∅ 



Note: A group may be non-commutative but one of its subgroups 

may be commutative: H=bc ( ,−, (f /(, ≠ 0g is acommutative 

subgroup of the non-commutative group GL(2,R). 

Theorem 1.21 Let G be a group and ∅ ≠H⊆G. Then H is a subgroup 

of G iff a.b-1 ∈H,∀a,b∈H. 

Proof:Let ∅ ≠H⊆G and let a.b-1 ∈H,∀a,b∈H.  

Since H≠ ∅, let a∈H.  

By assumption, e=a.a-1∈H.  

Let b∈H. Then b-1= e.b-1∈H.  

Also, for a,b∈H, a,b-1∈H and hence a.b=a.(b-1)-1∈H.  

Associativity, being a hereditary property, holds in (H,.) since it 

holds in (G,.).  

Thus H is a subgroup of G.  

Converse part is trivial. 

Theorem 1.22 Let G be a group and ∅ ≠H⊆G, H finite. Then H is a 

subgroup of G iffa.b∈H,∀a,b∈H. 

Proof:(sufficiency)Let h∈H.  

Then A={h,h2,h3,…}⊆H.  



Since H is finite, there exist integers r and s, 0≤r<s and hr=hs. Hence 

by cancellation property in G, e=hs-r ∈H.  

Now e=hs-r=h.hs-r-1 implies h-1=hs-r-1∈H 

[ Note that  s-r-1 is non-negative integer] .  

Let a,b∈H. Then a,b-1∈H. Hence by hypothesis, a.b-1∈H. 

Thus by the previous theorem, H is a subgroup of G. 

Theorem 1.23The intersection of all subgroups of a group G is a 

subgroup of G. For two subgroups H and K of a group G, H∪K is a 

subgroup of G iff H⊆K or K⊆H. 

Proof: Let {�A}A be the  collection of all subgroups of a group G. 

Since e∈⋂�A, ⋂�A ≠ ∅. Let a,b∈⋂�A . Then a,b∈�A and since �A is a 

subgroup of G, a.b-1∈�A. Thus a.b-1∈⋂�A. Hence ⋂�A  is a subgroup 

of G. 

Let H ,K and H∪K be subgroups of G. To prove:H⊆K or K⊆H.  

If possible, let H ⊈K and K⊈H.  

Let a∈ H-K, b∈K-H.  

Since H∪K is a  subgroup, a.b-1∈H∪K. 

 If a.b-1∈K, then a=(ab-1)b∈K, contradiction.  

Similarly, if a.b-1∈H, then  b=(a.b-1)-1.a-1∈H,contradiction.  



Hence H∪K is a subgroup implies either H⊆K or K⊆H. 

Converse part is obvious. 

Definition 1.20 Let G be a group. Z(G)={x∈G/x.g=g.x,∀g∈G} is called 

the centre of G. If G is commutative, then G=Z(G). 

Example1.71Z(G) is a subgroup of G. 

»Since e∈Z(G), so Z(G)≠ ∅. Also Z(G) is a subset of G. 

Let a,b∈Z(G). 

 Then for g∈G, (a.b).g=a.(b.g)=a.(g.b)=(a.g).b=(g.a).b=g.(a.b)  

So a.b∈ G. 

Again, let a∈Z(G). Then a.g=g.a,∀g∈G.  

Then a-1.(a.g)a-1=a-1.(g.a).a-1 implying g.a-1=a-1.g; hence a-1∈Z(G). 

Hence Z(G) is a subgroup of G. 

Example1.72 Prove that every subgroup of (Z,+) is of the form 

nZ={na:a∈Z}, where n is a non-negative integer. 

» Let H be a subgroup of Z. If H={0}, then H=0Z. 

Let {0}⊊H. Let 0≠a∈H. Since H is a subgroup, -a∈H.  

Thus H contains positive integers.  



By well-ordering principle of N, the set A={a∈H:a∈N}⊆N has a 

smallest element,say, n. We shall prove that H={nr:r∈Z}.  

Since n∈H and H is a subgroup,{nr:r∈Z}⊆H.  

Again, let b∈H. By division algorithm for integers, there exist p,r∈Z 

such that b=pn+r,0≤r<n.  

So r=b-pn∈H(since H is a subgroup).  

Since r<n and n is the smallest positive integer such that n∈H,  

sor=0.  

Thus b=pn∈nZ.  

Thus H⊆nZ. 

Combining the two, H=Nz. 

Practice sums 

1. Let G be a group and a∈G. Let C(a)={x∈G:a.x=x.a}.Show that C(a) is 

a subgroup of G and Z(G) is contained in C(a). 

2. Let G be a commutative group . Prove that the set H of all elements 

of G of finite order is a subgroup of G. 

3. In the group S3, show that the subset H={~ ∈S3:0(~) divides 2} is 

not a subgroup of S3. 



4. In the group S3, show that H={I,(2 3)} and K={I,(1 2)} are 

subgroups but H∪K is not a subgroup of S3. 

5. If a group has finitely many subgroups, then G is finite. 

6. True or false: the multiplicative group R+ of nonzero real numbers 

has no finite subgroups other than {1}. 

[ solution: Let {1}≠H be a finite subgroup of R+. Let c∈H, c≠1. Then 

c-1∈ H; c or c-1 is greater than 1. Since cn∈ H for all integer n, cn are 

distinct for distinct integral values n, H is infinite, contradiction.] 

7. True or false:Let G be a group and H be a nonempty subset of G 

such that a-1∈H for all a∈H. Then H is a subgroup. 

[False; Z-{0} is not a subgroup of (Z,+).] 

8. True or false:There does not exist a proper subgroup H of (Z,+) 

such that H contains both 5Z and 7Z. 

[solution: Let H be such a subgroup; thus 1=5.3-7.2∈H; hence -1∈H. 

Thus for any integer n, n=1+1+…+1(n times, if n positive) , n=(-

1)+…+(-1)(-n times, if n negative),0∈H; hence H=Z.] 

  

CYCLIC GROUPS 



A group G is a cyclic group iff there exists a∈G such that 

G=(a)={an:n∈Z}. Such an element a is called a generator of G. 

Example1.81 (Z,+) is a cyclic group since Z=(1). (Zn,+n) is cyclic with 

[1] as one of its generators. (R,+) is not cyclic: a rational can not 

generate irrational and vice versa. The multiplicative group of all 

four fourth roots of unity is cyclic with i as one of its generators.  

Theorem 1.24 Every cyclic group is commutative ; converse may not 

hold. 

Proof: Let G=(a) and let b,c∈G. Then b=an,c=am, there exist integers 

m,n. Thus bc=an.am=an+m=am+n=am.an=cb, proving that G is abelian. 

For the converse, consider the Klein’s 4-group: G={e,a,b,c} with the 

binary operation 0 defined by the property a2=b2=c2=e2=e. Then G is 

abelian but not cyclic. [Try to construct the composition table for 

Klein’s 4-group.] 

Theorem 1.25 A finite group G is cyclic iff there exists a∈G such that 

0(a)=0(G). 

(0(A) stands for the number of elements of a finite set A) 

Proof: Let G be a finite cyclic group of ordern. Hence there exists 

element a∈G such that G=(a)={ai:i∈Z}. Since G is finite, there exist 

i,j∈Z with i<jsuch that ai=aj. Thus aj-i=e, j-i∈N. Let m be the smallest 



positive integer such that am=e. Then 0(a)=m and for all integers 

i,jsuch that 0≤i<j<m, ai≠aj or else aj-i=e, which contradicts the 

minimality of m. Hence the elements of the set S={e,a,a2,…,am-1} are 

distinct. Clearly, S⊆(a). Conversely, let ak∈(a). Then there exist q,r∈Z 

such that k=qm+r,0≤r<m.  

Thus ak=aqm+r=((�)�.ar=ar∈S. Hence S=(a).  

Since elements of S are distinct and 0((a))=n, m=n. Hence 0(a)=n. 

Conversely assume G is a finite group of order n and G has an 

element a such that 0(a)=n. since o(a)=n, all the elements of 

A={e,a,a2,…,an-1} are distinct ,A⊆G and 0(A)=0(G). Hence G=A=(a). 

C o r o l l a r y : Let (a) be finite cyclic group. Then 0(a)=0((a)). 

Example1.82 Klein’s 4-group is not cyclic since it has no element of 

order 4. 

Theorem 1.25 Let G=(a) , 0(G)=n. then for any integer k, 1≤k<n, ak is 

a generator of G iffgcd(n,k)=1. 

Proof:If G=(ak), then 0(ak)=0(G)=n. since G=(a), we have 0(a)=n. 

Thus n=0(ak)=
�())rst	(q,�) = qrst	(q,�). So gcd(n,k)=1. 

Conversely, let gcd(n,k)=1. Then 0(ak)=
�())rst	(q,�)=0(a)=n=0(G). Hence 

G=(ak). 



Example1.82 For the group G={1,-1.i,-i}, 0(G)=4 and 1 and 3 are the 

only positive integers less than 4 and relatively prime to 4.Hence i 

and i3=-i are the only generators of G. 

Theorem 1.26  Every subgroup of a cyclic group is cyclic. 

Proof: Let H be a subgroup of a cyclic group G=(a). If H={e}, then 

H=(e). Suppose H≠{e}. Then there exists b∈H , b≠e. Thus there exist 

nonzero integer m such that b=am. Since H is a subgroup, a-m=b-1∈H. 

either m or –m is a positive integer. Hence there exists positive 

integer i such that ai∈H. Thus A={n∈N:an∈H} ≠ ∅. By well-ordering 

principle of N, A has a least element n. we prove that H=(an). 

sincean∈H and H is a subgroup, (an)⊆H. Let h∈H⊆G=(a). thusthere 

exist integer k such that h=ak. by division algorithm for integers, 

there exist integers q,r such that k=nq+r,0≤r<n. thus ar=ak.((q)9�∈H 

(since H is a subgroup). Since n is the smallest positive integer such 

that an∈H and 0≤r<n, r=0. Thus k=nq and so h=ak=anq=((q)�∈(an). 

Hence H=(an). 

Example1.83  Find all the generators of (Z10,+10). 

Z10=([m])=(m[1]) iffgcd(m,10)=1. Thus the generators of Z10 are 

[1],[3],[7] and [9]. 

Example1.84 The group (Q,+) is not cyclic. Hence (R,+) is not cyclic. 



If possible, let Q=(x). Clearly, x≠0. Hence x=
��, where p,q are prime to 

each other and q≠0. But 
�=�∈Q=(

��), contradiction. 

C O S E T S  A N D  L A G R A N G E ’ S  T H E O R E M  

Let G be a group and H be a subgroup of G. Define a relation R on G 

by: a,b∈G, aRbiff a.b-1∈H. R is an equivalence relation on G. For a∈G, 

[a], the equivalence class containing a, is given by: 

[a]={b∈G:bRa}={b∈G: b.a-1∈H}=Ha={ha:h∈H} (Ha is called right 

coset of H in G generated by a). We know that equivalence classes  

are nonempty, any two distinct equivalence classes are disjoint and 

union of all the equivalence classes equals G.Thus Ha∩Hb=Ha, if  

b∈[a]=Ha and Ha∩Hb=∅, if b∉Ha and G=∪{Ha:a∈G}. Note also that 

H=He, where e is the identity of G. 

L e m m a : Let H be a subgroup of a group G. If a∈G, then 

0(aH)=0(H). 

Proof:  f:H→aH, f(h)=a.h, is a bijection. Hence the result. 

Theorem 1.27 (Lagrange) Let H be a subgroup of a finite group G. 

Then0(G)=[G:H]0(H), where [G:H], the index of H in G, is the number 

of distinct right cosets of H  in G. 

Proof: Since G is finite, [G:H] is finite. Let [G:H]=r. Let 

A={Ha1,Ha2,…,Har} be the collection of distinct right cosets of H in G. 



Since A is a partition of G, 0(G)= 0(Ha1)+…+0(Har)=r0(H)( by lemma 

above). Hence the result. 

Converse of Lagrange’s Theorem may not hold.  It can be proved 

that 6 divides 0(A4) but A4 has no subgroup of order 6. But the 

converse holds for a cyclic group. 

Theorem 1.28 Let G =(a), 0(G)=n. If m is a positive integral factor of 

n, then there exists a unique subgroup of G of order m. 

Proof: There exists positive integer k such that n=mk. Now 

0(ak)=
�())rst	(�,�()))=q�=m; hence 0((ak))=0(ak)=m. 

Now suppose K is a subgroup of G of order m. K=(at), for some t∈Z. 

0(at)=0((at))=m. thus amt=e. Since 0(a)=n, n divides mt, that is, 

mt=nr for some  integer r. By Lagrange’s Theorem, n=km, for some 

natural k. Hence mt=kmr, so that t=kr. So at=(ak)r∈(ak)=H. Hence 

K=(at)⊆(ak)=H. Both these subgroups have order m. hence H=K. 

Example1.85 Let G be a group of order 28. Show that G has a 

nontrivial subgroup. 

»If G is cyclic, G has a subgroup corresponding to every positive 

integral factor of 28, say, corresponding to 4. 

If G is not cyclic, consider the cyclic subgroup (a) generated by 

e≠a∈G. Clearly {e}⊊(a)⊊G (G is not cyclic). 



Example1.86 Let G=(a) be an infinite cyclic group. Prove that (1) 

ar=atonly if r=t, r,t∈Z , (2) G has only two generators. 

»Let ar=at, r>t. then there exist natural number m such that at+m=at, 

so that, am=e. Thus 0(a) is finite and 0((a)) is infinite, contradiction. 

Let (a)=G=(b), for some b∈G. Since a∈(b) and b∈(a), there exist 

integers r and t such that a=br, b=at. thus a=art, which by part (1) 

implies rt=1.Thus r=1 or -1. Hence b=a or b=a -1. Thus G has exactly 

two generators. 

Example1.87 If a group G has only two subgroups, then G is a cyclic 

group. 

»G≠{e} since G has two subgroups. Let H=(a), e≠a∈G. Since H≠{e} 

(a∈H), G=H=(a). 

Example1.88 Let G be a cyclic group of order 42. Find the number of 

elements of order 6 and of order 7. 

»LetG=(a), 0(a)=42. Let b=ar∈G, o(b)=6. Then a6r=e. Thus 42 must 

divide 6r, that is, 7 must divide r and r<42. Thus r=7,14,21,28,35. 

Thus there are five elements of G of order 6. 

Example1.89 Let G be a cyclic group such that G has exactly three 

subgroups: G,{e} and a subgroup of order 5. Find the order of G. 



Example1.90 Let G be a cyclic group of infinite order. Find the 

number of elements of  finite order. 

Theorem 1.29  Every group of prime order is cyclic. 

Proof: Let 0(G)=p, p prime. Thus p≥2. Let e≠a∈G. Then 0((a)) 

divides 0(G)=p ,0((a))=0(a)>1. Thus 0((a))=p=0(G), (a)⊆G. Hence 

G=(a). 

Theorem 1.30 Let H and K be finite subgroups of a group G. Then 

0(HK)=
�(�)�(�)�(�∩�) . 

Example1.91 Let G be a group of order pn, p prime. Prove that G 

contains an element of order p. 

»Let e≠a∈G. Let H=(a). Then 0(a) divides 0(G)=pn. Thus 

0(H)=0(a)=pm, 1≤m≤n. Now in the cyclic group (a) of order pm, there 

exists a cyclic subgroup C=(c) of order p. Thus c∈G and 0(c)=p. 

Example1.92 Let G be a group of order pqwhere  p and q are prime. 

show that every subgroup H(≠ l)is cyclic. 

»0(H) divides pq=0(G). Since p,q are primes, 0(H)=1,p,q (note: H≠l). Sine every group of prime order is cyclic, result follows. 

Example1.93  Find all subgroups of Klein’s 4-group. 



Example1.94  Prove that every proper subgroup of S3 is cyclic 

though S3 is not cyclic. 

Example1.95 Prove that every group of order 49 contains a 

subgroup of order 7. 

Example1.96 Let G be a group such that 0(G)<320. Suppose G has 

subgroups of order 35 and 45. Find the order of G. 

Example1.97 Let A and B are two subgroups of a groupG. If 0(A)=p 

(p prime), then show that A∩B={e} or A⊆B. 

 

 

 

 


