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S Y L L A B U S  

M O D U L E  – I  ( A l g e b r a - 1 )  ( 3 6  c l a s s e s )  ( 5 0  

m a r k s )   

C o m p l e x  N u m b e r s [ 4 ]  : D e  M o i v r e ’ s  t h e o r e m  

a n d  i t s  a p p l i c a t i o n s ( 4 )   

P o l y n o m i a l s [ 1 6 ] :  F u n d a m e n t a l  T h e o r e m  o f  

C l a s s i c a l  A l g e b r a  ( s t a t e m e n t  o n l y ) . N a t u r e  o f  

r o o t s  o f   

a n  e q u a t i o n  ( s u r d  o r  c o m p l e x  r o o t s  o c c u r  i n  

p a i r s )  ( 2 ) . S y n t h e t i c  D i v i s i o n ( 2 ) S t a t e m e n t  o f  

D e s c a r t e ’   

s  r u l e  o f  s i g n s  a n d  i t s  a p p l i c a t i o n s ( 2 ) .  

S t a t e m e n t  o f  B o l z a n o ’ s  t h e o r e m  o n  c o n t i n u i t y  

i n  c a s e  o f   

p o l y n o m i a l s .  R e l a t i o n  b e t w e e n  r o o t s  a n d  

c o e f f i c i e n t s ( 2 ) .  S y m m e t r i c  f u n c t i o n s  o f  

r o o t s ( 1 ) .   

T r a n s f o r m a t i o n  o f  e q u a t i o n s  ( 4 ) .  C a r d a n ’ s  

m e t h o d  o f  s o l v i n g  a  c u b i c  &  F e r r a r i ’ s  m e t h o d  

f o r  a   

b i q u a d r a t i c  e q u a t i o n ( 3 ) .   
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S e t  T h e o r y &  R e l a t i o n s  [ 8 ] : L a w s  o f  a l g e b r a  o f  

s e t s  & D e  M o r g a n ’ s  l a w s ( 2 ) .  C a r t e s i a n  p r o d u c t  

o f   

s e t s ( 2 )   

R e l a t i o n s  o n  a  s e t .  R e f l e x i v e ,  s y m m e t r i c  a n d  

t r a n s i t i v e  p r o p e r t i e s  o f  a  r e l a t i o n  o n  a  s e t ( 2 ) .   

E q u i v a l e n c e  r e l a t i o n s ,  e q u i v a l e n c e  c l a s s &  

p a r t i t i o n s -  i l l u s t r a t i v e  d i s c u s s i o n s  ( 2 ) .   

M a p p i n g s [ 8 ] :  I n j e c t i v e  a n d  s u r j e c t i v e  

m a p p i n g ( 2 ) .  C o m p o s i t i o n  o f  m a p p i n g s —

c o n c e p t  o n l y ( 1 ) .   

I d e n t i t y  a n d  i n v e r s e  m a p p i n g s ( 2 ) .  B i n a r y  

o p e r a t i o n s  o n  a  s e t ,  I d e n t i t y  e l e m e n t  &  

I n v e r s e   

e l e m e n t s ( 3 )  

C L A S S I C A L  A L G E B R A  

                                                                        

CHAPTER I 

COMPLEX NUMBERS: DE’ MOIVRE’S THEOREM 

A complex number z is an ordered pair of real numbers (a,b): a is called the real 

part of z, denoted by Re z and b is called the imaginary part of z, denoted by Im 

z.   If Re z=0, then z is called purely imaginary; if Im z =0, then z is called real. 

On the set C of all complex numbers, the relation of equality and the operations 

of addition and multiplication are defined as follows: 
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(a,b)=(c,d) iff a=b and c=d, (a,b)+(c,d)=(a+c,b+d), (a,b).(c,d)= (ac-bd,ad+bc) 

The set C of all complex numbers under the operations of addition and 

multiplication as defined above satisfies following properties: 

� For z1,z2,z3∈C, (1) (z1+z2)+z3=z1+(z2+z3)(associativity), (2)z1+(0,0)=z1, 

(3) for z=(a,b)∈C, there exists –z=(-a,-b)∈C such that (-z)+z=z+(-

z)=(0,0), (4)z1+z2=z2+z1. 

� For z1,z2,z3∈C, (1) (z1. z2).z3=z1.(z2.z3)(associativity), (2)z1.(1,0)=z1, (3) 

for z=(a,b)∈C,z≠(0,0), there exists 
�
� ∈C such that z.

�
�=

�
�.z=1, 

(4)z1.z2=z2.z1. 

� For z1,z2,z3∈C, z1.(z2+z3)=(z1.z2)+(z1.z3). 

Few Observations 

(1) Denoting the complex number (0,1) by i and identifying a real complex 

number (a,0) with the real number a, we see 

z=(a,b)=(a,0)+(0,b)=(a,0)+(0,1)(b,0) can be written as z=a+ib.  

(2) For two real numbers a,b , a
2
+b

2
=0 implies a=0=b; same conclusion need 

not follow for two complex numbers, for example, 1
2
+i

2
=0 but 

1≡(1,0)≠(0,0) ≡0 and i=(0,1)	≠(0,0) (≡ denotes identification of a real 

complex number with the corresponding real number). 

(3) For two complex numbers z1,z2, z1z2=0 implies z1=0 or z2=0. 

(4) i2
=(0,1)(0,1)=(-1,0) ≡-1. 

(5) Just as real numbers are represented as points on a line, complex numbers 

can be represented as   points on a plane: z=(a,b)↔P: (a,b). The line 

containing points representing the real complex numbers (a,0), a real,  is 

called the real axis and the line containing points representing purely 

imaginary complex numbers (0,b) ≡ib is called the imaginary axis. The 

plane on which the representation is made is called Gaussian Plane or 

Argand Plane. 

Definition 1.1 Let z=(a,b) ≡a+ib. The conjugate of z, denoted by �̅ ,  is (a,-b) 

≡a-ib.  

Geometrically, the point (representing) �̅ is the reflection of the point 

(representing) z in the real axis. The conjugate operation satisfies the following 

properties: 
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(1) �̅̅=z , (2) �� + �
��������� = �� + �
 , (3) ���
������ = �� + �
 , (4)������
����� = �����

�����
 , (4) z+�̅=2 

Rez, z-�̅=2i Im(z) 

Definition 1.2Let z=(a,b) ≡a+ib. The modulus of z, written as |�|, is defined as 

√�
 + �
. 

Geometrically, |�| represents the distance of the point representing z from the 

origin (representing complex number (0,0) ≡0+i0). More generally, |�� − �
| 
represents the distance between the points z1  and z2. The modulus operation 

satisfies the following properties:  

(1)    |�� + �
| ≤ |��| + |�
|,   (2)   |��. �
| = |��|. |�
|    (3)  ������ =
|��|
|��|

        

(4)    �|��| − |�
|� ≤ |�� − �
| 

GEOMETRICAL REPRESENTATION OF COMPLEX NUMBERS: THE 

ARGAND PLANE 

Let z=a+ib be a complex number. In the Argand plane, z is represented by the 

point whose Cartesian co-ordinates is (a,b) referred to two perpendicular lines 

as axes, the first co-ordinate axis is called the real axis and the second the 

imaginary axis. Taking the origin as the pole and the real axis as the initial line, 

let (r,�) be the polar co-ordinates of the point (a,b). Then a=r cos	�, b=r sin	�. 

Also r=√�
 + �
=|�|. Thus z=a+ib=|�|(cos	�+isin	�): this is called modulus-

amplitude form of z. For a given z≠0, there exist infinitely many values of � 

differing from one another by an integral multiple of 2�: the collection of all 

such values of � for a given z≠0 is denoted by Arg z or Amp z. The principal 

value of Arg z , denoted by arg z or amp z, is defined to be the angle � from the 

collection Arg z that satisfies the condition -� < � ≤ �. Thus,   Arg z={arg 

z+2n�: n an integer}. arg z satisfies following properties: 

 (1) arg(z1z2)=argz1+argz2+2k�, where k is a suitable integer from the set{-

1,0,1] such that -� < argz1+argz2+2k� ≤ �, 

 (2) arg������ = argz1-argz2+2k�, where k is a suitable integer from the set{-

1,0,1] such that -� < argz1-argz2+2k� ≤ �. 

Note An argument of a complex number z=a+ib is to be determined from the 

relations cos	�=a/|�|, sin	�= b/|�| simultaneously and not from the single 

relation tan �=b/a. 

Example1.1 Find arg z where z=1+i tan
��
 .  
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»Let 1+itan
��
 =r(cos �+i sin �). Then r

2
= sec

2��
  . Thus r = - sec

��
  > 0. Thus cos 

�=- cos
��
 , sin �=-sin 

��
 . Hence �=	�+

��
 . Since �>	�, arg z=	�-2	�=-


�
 . 

Geometrical representation of operations on complex numbers: 

Addition Let P and Q represent the complex numbers z1=x1+iy1 and z2=x2+iy2 

on the Argand Plane respectively. It can be shown that the fourth vertex R of the 

parallelogram OPRQ represents the sum z1+z2 ofz1 and z2. 

Product Let z1=|��|(cos �� + %	&%' ��) and z2=|�
|(cos �
 + %	&%' �
) where –

�<��,�
 ≤ �. Thus z1z2=|��||�
|{cos(��+�
)+isin(��+�
)}. Hence the point 

representing z1z2 is obtained by rotating line segment OP{ where P represents 

z1} through arg z2 and then dilating the resulting line segment by a factor of 

|�
|. In particular , multiplying a complex number by i=cos��
� + %&%' ��
� 

geometrically means rotating the line segment by 
�

. 

T h e o r e m  1 . 1  (De Moivre’s Theorem) If n is an integer and � is any real 

number, then (cos	�+i sin	�)
n
= cos n	�+i sin n	�. If n=

(
), q natural, p integer, 

|*|and q are realtively prime, � is any real number, then (cos	�+i sin	�)
n
 has q 

number of values, one of which is cos n	�+i sin n	�. 

Proof: Case1:  Let n be a positive integer. 

Result holds for n=1: (cos	�+i sin	�)
1
= cos 1	�+i sin 1	�. Assume result holds 

for some positive integer k: (cos	�+i sin	�)
k
= cos k	�+i sin k	�.Then (cos	�+i 

sin	�)
k+1

=(cos	�+i sin	�)
k
(cos	�+i sin	�)=( cos k	�+i sin k	�)( cos	�+i sin	�)= 

cos(k+1)	�+isin(k+1)	�. Hence result holds by mathematical induction. 

Case 2: Let n be a negative integer, say, n=-m, m natural. 

(cos	�+i sin	�)
n
=(cos	�+i sin	�)

-m
=

�
(+,-./0-01.23 = �

4567./0	-01	7. (by case 1) = 

cos m�-isin m�=cos(-m)	�+isin(-m)	�= cos n	�+i sin n	�. 

Case3: n=0: proof obvious. 

Case 4: Let n=
(
), q natural, p integer, |*|and q are realtively prime. 

Let (cos � + %	&%'�2
8
9= cos :+i sin	:. Then (cos� + %	&%'�2(= (cos :+i 

sin	:)
q
. Thus cos p	�+isin p	�= cos q	:+i sin q	:. Thus q	:=2k�+p	�, that is, 

:=

;�/<	.

) . Hence (cos � + %	&%'�2
8
9= cos(


;�/<	.
) )+isin(


;�/<	.
) 2, where 

k=0,1,…,q-1 are the distinct q values. 
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S o m e  A p p l i c a t i o n s  o f  D e ’  M o i v r e ’ s  T h e o r e m  

(1) Expansion of cos n	�, sin n	� and tan n	� where n is natural and � is real. 

Cos n	�+i sin n	�=(cos	�+isin	�)
n
=cos

n	�+ =�1  cos
n-1	�isin	�+ =
1  cos

n-

2	�	%
&%'
�+…+i
n
sin

n	�= (cos
n	�- =
1  cos

n-2	�		&%'
�+…)+i( =�1  cos
n-

1	�sin	�- =�1  cos
n-3	�&%'��+…). Equating real and imaginary parts, cos 

n	�= cos
n	�- =
1  cos

n-2	�		&%'
�+… and sin n	�= =�1  cos
n-1	�sin	�- =�1  cos

n-

3	�&%'��+… 

(2) Expansion of cos
n	� and sin

n	� in a series of multiples of � where n is 

natural and �	is	real. 
Let x = cos � + %&%'�. Then x

n
=cos n	�+isin n	�, x

-n
= cos n	�-isin n	�. 

Thus (2 cos	�)
n
=(x+

�
C2

n
 

=(x
n
+
�
CD2 +	 =�

1 (x
n-2

+
�

CDE�)+…=2 cos n	�+ =�1 (2 cos(n-2)	�)+… 

Similarly, expansion of sin
n	� in terms of multiple angle can be derived. 

(3) Finding n th roots of unity 

To find z satisfying z
n
=1=cos(2k�)+isin(2k�2, where k is an integer. 

Thus z=[ cos(2k�)+isin(2k�2]1/n
=cos(


F�
1 2 + %&%' �
F�1 �, k=0,1,…,n-1; 

replacing k by any integer gives rise to a complex number in the set A={ 

cos(

F�
1 2 + %&%' �
F�1 �/ k=0,1,…,n-1}. Thus A is the set of all nth roots of 

unity. 

Example1.2Solve x
6
+x

5
+x

4
+x

3
+x

2
+x+1=0 

»We have the identity x
6
+x

5
+x

4
+x

3
+x

2
+x+1=

CGH�
CH� . Roots of x

7
-1=0 are cos


F�
I +

%&%' 
F�
I , k=0,1,…,6. Putting k=0, we obtain root of x-1=0. Thus the roots of 

given equation are cos

F�
I + %&%' 
F�

I , k=1,…,6. 

Example1.3 Prove that the sum of 99
th
 powers of all the roots of x

7
-1=0 is 

zero. 

»The roots of x
7
-1=0 are {1,J,	J2

,…,	J6
}, where J=cos


�
I +isin


�
I . Thus sum of 

99
th
 powers of the roots is 1+	J99

+(J
2KK +⋯+ (JM2KK =1+	J99
+(JKK2
 +⋯+

(JKK2M=
�HNOO.G
�HNOO =0, since JKK.I=1 and JKK ≠1. 
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Example1.4 If |��| = |�
| and arg z1+argz2=0, then show that z1=�
 . 

»Let |��| = |�
|=r, arg z1=�, then argz2=-	�. Thus z1=r(cos �+isin	�)=r(cos	�-

isin	�)=�
 . 

Example1.5 For any complex number z, show that,  |�| ≥ |QR	�|/|S7	�|
√
 . 

»Let z= x+iy. Then 2(x
2
+y

2
)-(x+y)

2
=(x-y)

2≥0. Thus x
2
+y

2≥ (C/T2�

  and so |�|= 

UV
 + W
 ≥ |QR	�|/|S7	�|
√
 . 

Example1.6 Prove that if the ratio 
�H0
�H� is purely imaginary, then the point 

(representing) z lies on the circle whose centre is at the point 
�

 (1 + %2 and 

radius is  
�
√
. 

»Let z=x+iy. Then 
�H0
�H� =

C�HC/T�HT
(CH�2�/T� + % �HCHT

(CH�2�/T�. By given condition ,V
 −

V + W
 − W=0, that is, �V − �

�



+ �W − �


�


= � �

√
�


.Thus z lies on the circle 

whose centre is at the point 
�

 (1 + %2 and radius is 

�
√
. 

Example1.7 If the amplitude of the complex number 
�H0
�/� is 

�
Y, show that z lies 

on a circle in the Argand plane. 

»Let z=x+iy. Then 
�H0
�/�=

C�/C/T�HT
(C/�2�/T� + % THCH�

(C/�2�/T�. By given condition, 

THCH�
C�/C/T�HT=1. On simplification we get (x+1)

2
+(y-1)

2
=1. Hence z lies on the 

circle with centre at (-1,1) and radius 1. 

Example1.8 If z and z1 are two complex numbers such that z+z1 and zz1 are   

both real, show that, either z and z1 are both real or z1=�̅. 

Example1.9 If  |�� + �
| = |�� − �
|, prove that arg z1 and argz2 differ by 
�

 

or 
��

 . 

»|�� + �
|
 = |�� − �
|
 Thus (z1+z2)(�� + �
 2= (z1-z2)(�� − �
 2 Or, ���
 +
�� �
 = 0(1). Let z1=r1(cos�� + %&%'��), z2=r2(cos�
 + %&%'�
). From (1), 

cos(��-�
)=0 proving the result. 
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Example1.10 If A,B,C represent complex numbers z1,z2,z3 in the Argand 

plane and z1+z2+z3=0 and |��|=|�
| = |��|, prove that ABC is an equilateral 

triangle. 

»z1+z2=-z3. Hence |�� + �
|
 = |��|
, that is, |��|
+|�
|
+2z1.z2=|��|
. By 

given condition, |��||�
|cos �=|��|
, where � is the angle between z1 and 

z2.Thus cos �=-
�

, that is, �=120

0
. Hence the corresponding angle of the triangle 

ABC is 60
0
. Similarly other angles are 60

0
. 

Example1.11 If (x,y) represents a point lying on the line 3x+4y+5=0, find the 

minimum value of |V + %W|. 

Example1.12 Let z and z1 be two complex numbers satisfying z=
�/��
�H��

 and 

|��|=1. Prove that z lies on the imaginary axis. 

» z1=
�H�
�/�. By given condition, 1 = ��H��/�� =

|�H�|
|�/�|. If z=x+iy, x=0. Hence etc. 

Example1.13 If z1, z2 are conjugates and z3,z4 are conjugates, prove that,  

arg	���\ = arg 
�]
��

 . 

» Since z1, z2 are conjugates, arg z1+arg z2=0. Since z3,z4 are conjugates, arg 

z3+arg z4=0. Thus arg z1 + arg z2 = 0 = arg z3+arg z4. Hence arg z1-arg z4=arg z3-

arg z2; thus result holds. 

Example1.14 complex numbers z1,z2,z3 satisfy the relation z1
2
+z2

2
+z3

2
-z1z2-

z2z3-z3z1=0  iff  |�� − �
| = |�
 − ��| = |�� − ��|. 
» 0=z1

2
+z2

2
+z3

2
-z1z2-z2z3-z3z1=(z1+wz2+w

2
z3)(z1+w

2
z2+wz3), where w stands for 

an imaginary cube roots of unity. If z1+wz2+w
2
z3=0, then (z1-z2)=-w

2
(z3-z2); 

hence |�� − �
|=|^
||�
 − ��|=|�
 − ��|.similarly other part. 

Conversely, if |�� − �
| = |�
 − ��| = |�� − ��|, then z1,z2,z3 represent vertices 

of an equilateral triangle. Then z2-z1=(z3-z1)(cos 60
0
+isin60

0
), z1-z2=(z3-z2)( cos 

60
0
+isin60

0
 ); by dividing respective sides, we get the result. 

Example1.15 Prove that |�� + �
|
 + |�� − �
|
 = 2(|��|
 + |�
|
), for two 

complex numbers z1,z2. 

»|�� + �
|
 = (�� + �
2(�� + �
 2=|��|
 + |�
|
+2 z1z2; similarly |�� −
�
|
=|��|
 + |�
|
-2 z1z2; Adding we get the result. 
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Example1.16 If cosJ+cos `+cos a=sinJ+sin	`+sin	a=0, then prove that (1) 

cos 3J+cos3	`+cos 3	a=3cos(J + 	`+	a), (2) ∑cd&
J=∑&%'
J=3/2. 

»Let x=cos J+i sinJ, y= cos `+i sin`, z= cos a+i sina. Then x+y+z=0. Thus 

x
3
+y

3
+z

3
=3xyz. By De’ Moivre’s Theorem, (cos 3	J+ cos 3	`+cos 3	a)+i(sin 

3	J+ sin 3	`+sin 3	a)=3[ cos(J + ` + a)+isin(J + ` + a2]. Equating, we get 

result. 

Let x=cos J+i sinJ, y= cos `+i sin`, z= cos a+i sina. Then x+y+z=0. Also 
�
C +

�
T +

�
� = 0;	hence xy+yz+zx=0. Thus x

2
+y

2
+z

2
=0. By De’ Moivre’s 

Theorem, cos 2	J+cos2	`+cos2	a=0. Hence∑cd&
J=3/2. Using sin
2	J=1- 

cos
2	J, we get other part. 

Example1.17 Find the roots of z
n
=(z+1)

n
, where n is a positive integer, and 

show that the points which represent them in the Argand plane are collinear. 

Let w=
�/�
� . gℎi'	� = �

jH�.Now z
n
=(z+1)

n
 implies w

n
=1.Thus, w=cos


F�
1 +

%&%' 
F�
1 ,k=0,…,n-1. 

So z=
�

456�klD /0-01�klD
  , k=1,…,n-1 

=− �

 −

0

 cdm

F�
1 . Thus all points z satisfying   z

n
=(z+1)

n
  lie on the line  x=-

�

 . 

 

                                                                        

CHAPTER II 

THEORY OF EQUATIONS 

 

An expression of the form a0x
n
+a1x

n-1
+…+an-1x+an, where a0,a1,…,an are real or 

complex constants, n is a nonnegative integer and x is a variable (over real or 

complex numbers) is a polynomial in x. If a0≠0, the polynomial is of degree n 

and a0x
n
 is the leading term of the polynomial. A non-zero constant a0 is a 

polynomial of degree 0 while a polynomial in which the coefficients of each 

term is zero is said to be a zero polynomial and no degree is assigned to a zero 

polynomial. 

Equality two polynomials a0x
n
+a1x

n-1
+…+an-1x+an and b0x

n
+b1x

n-1
+…+bn-1x+bn 

are equal iff a0=b0,a1=b1,…,an=bn. 
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Addition Let f(x)= a0x
n
+a1x

n-1
+…+an-1x+an, g(x)= b0x

n
+b1x

n-1
+…+bn-1x+bn. the 

sum of the polynomials f(x) and g(x) is given by  

f(x)+g(x)= a0x
n
+…+an-m-1x

m+1
+(an-m+b0)x

m
+…+(an+bm), if m<n 

              = (a0+b0) x
n 
+…+ (an+ bn), if m=n 

              = b0x
m
+…+bm-n-1x

n+1 
+ (bm-n+a0) x

n
+…+ (bm+an), if m>n. 

Multiplication Let f(x) = a0x
n
+a1x

n-1
+…+an-1x+an, g(x)= b0x

n
+b1x

n-1
+…+bn-

1x+bn. the product of the polynomials f(x) and g(x) is given by  

f(x)g(x)=c0x
m+n

+c1x
m+n-1

+…+ cm+n
,
 where ci = a0bi+a1bi-1+…+aib0. c0=a0b0≠0; 

hence degree of f(x)g(x) is m+n. 

Division Algorithm Let f(x) and g(x) be two polynomials of degree n and m 

respectively and n≥m. Then there exist two uniquely determined polynomials 

q(x) and r(x) satisfying f(x)=g(x)q(x)+r(x), where the degree of q(x) is n-m and 

r(x) is either a zero polynomial or the degree of r(x) is less than m. In particular, 

if degree of g(x) is 1, then r(x) is a constant, identically zero or non-zero. 

T h e o r e m  1 . 2  ( Remainder Theorem) If a polynomial f(x) is divided by 

x-a, then the remainder is f(a). 

»Let q(x) be the quotient and r (constant)be the remainder when f is divided by 

x-a, then f(x)=(x-a)q(x)+r is an identity. Thus f(a)=r. 

T h e o r e m  1 . 3  ( Factor Theorem) If f is a polynomial, then x-a is a factor 

of f iff f(a)=0. 

»By Remainder theorem, f(a) is the remainder when f is divided by x-a; hence, 

if f(a)=0, then x-a is a factor of f. Conversely, if x-a is a factor of f, then f(x)=(x-

a)g(x) and hence f(a)=0. 

Example1.29 Find the remainder when f(x)=4x
5
+3x

3
+6x

2
+5 is divided by 

2x+1. 

»The remainder on dividing f(x) by x-(-
�

2=x+

�

 is f(-

�

)=6. If q(x) be the 

quotient, then f(x)=q(x)(x+
�

)+6=

)(C2

 (2x+1)+6. Hence 6 is the remainder when f 

is divided by 2x+1. 

Synthetic division 

Synthetic division is a method of obtaining the quotient and remainder when a 

polynomial is divided by a first degree polynomial or by a finite product of first 
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degree polynomials. Let q(x)=b0x
n-1

+b1x
n-2

+…+bn-1 be the quotient and R be the 

remainder when f(x)=a0x
n
+a1x

n-1
+…+an is divided by x-c. Then 

a0x
n
+a1x

n-1
+…+an=( b0x

n-1
+b1x

n-2
+…+bn-1)(x-c)+R. 

Above is an identity; equating coefficients of like powers of x, a0=b0, a1=b1-cb0, 

a2=b2-cb1,…,an-1=bn-1-cbn-2,an=R-cbn-1.    

Hence     b0=a0,b1=a1+cb0,b2=a2+cb1,…,bn-1=an-1+cbn-2,R=an+cbn-1. 

The calculation of b0,b1,…,bn-1,R can be performed  as follows: 

     a0    a1    a2     …    an-1    an 

          cb0   cb1    …   cbn-2   cbn-1 

    b0   b1     b2     ….  bn-1     R 

Example1.30 Find the quotient and remainder when 2x
3
-x

2
+1 is divided by 

2x+1. 

»                     -
�

 2      -1      0     1 

            -1     1     -½ 

   …………………………….. 

   2       -2      1  |   ½ 

Thus 2x
3
-x

2
+1=(x+

�

)(2x

2
-2x+1)+

�

=(2x+1)(x

2
-x+

�

)+

�

; hence the quotient is x

2
-

x+
�

 and the remainder is 

�

. 

Example1.31Find the quotient and remainder when x
4
-3x

3
+2x

2
+x-1 is 

divided by x
2
-4x+3. 

»x
2
-4x+3=(x-1)(x-3). We divide x

4
-3x

3
+2x

2
+x-1 by x-1 and then the obtained 

quotient again by x-3 by method of synthetic division. We get x
4
-3x

3
+2x

2
+x-

1=(x-1)[x
3
-2x

2
+1]+0=(x-1)[(x-3){x

2
+x+3}+10]= (x

2
-4x+3)(x

2
+x+3)+10(x-1); 

hence the quotient is x
2
+x+3 and the remainder is 10(x-1). 

Applications of the method 

(1) To express a polynomial f(x)=a0x
n
+a1x

n-1
+…+an as a polynomial in x-c. 

Let f(x)=A0(x-c)
n
+A1(x-c)

n-1
+…+An. Then f(x)=(x-c)[A0(x-c)

n-1
+A1(x-c)

n-

2
+…+An-1]+An. Thus on dividing f(x) by x-c, the remainder is An and the 

remainder is q(x)= A0(x-c)
n-1

+A1(x-c)
n-2

+…+An-1. Similarly if q(x) is 
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divided by x-c, the remainder is An-1. Repeating the process n times, the 

successive remainders give the unknowns An,…,A1 and A0=a0. 

(2) Let f(x) be a polynomial in x. to express f(x+c) as a polynomial in x. 

Let f(x)=a0x
n
+a1x

n-1
+…+an=A0(x-c)

n
+A1(x-c)

n-1
+…+An; by method 

explained above , the unknown coefficients can be found out in terms of 

the known coefficients a0,…,an. Now f(x+c)=A0x
n
+…+An. 

Example1.32 Express f(x)=x
3
-6x

2
+12x-16=0 as a polynomial in x-2 and 

hence solve the equation f(x)=0. 

» Using method of synthetic division repeatedly, we have 

       2 |  1        -6        12       -16           Hence f(x)=(x-2)
3
-8=0. 

             2         -8         8           Thus x-2=2,2w,2w
2
 (w is an 

imaginary cube roots of unity) 

  ----------------------------       Hence x=4,2+2w,2+2w
2
. 

  1        -4          4       |		-8 

                                       2         -4 

  ----------------------- 

  1        -2        |  0 

             2 

  ------------ 

1 | 0 

Example1.33 If f(x) is a polynomial of degree ≥2 in x and a,b are unequal, 

show that the remainder on dividing f(x) by  (x-a)(x-b) is
!CHn2o!p2H!CHp2o!n2

pHn . 

» By division algorithm, let f(x)=(x-a)(x-b)q(x)+rx+s, where rx+s is the 

remainder. Replacing x by a and by b in turn in this identity, f(a)=ra+s, 

f(b)=rb+s; solving for r,s and substituting in the expression rx+s,we get required 

expression for remainder. 

Example1.34 If x2
+px+1 be a factor of ax

3
+bx+c, prove that a

2
-c

2
=ab. Show 

that in this case x
2
+px+1 is also a factor of cx

3
+bx

2
+a. 

»Let ax
3
+bx+c=( x

2
+px+1)(ax+d) (*) (taking into account the coefficient of x

3
). 

Comparing coefficients, d+ap=0,a+pd=b,d=c whence the result a
2
-c

2
=ab 
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follows. Replacing x by 1/x in the identity (*), we get cx
3
+bx

2
+a=( 

x
2
+px+1)(dx+a): this proves the second part. 

If f(x) is a polynomial of degree n, then f(x)=0 is called a polynomial equation 

of degree n. If  b is a real or complex number such that f(b)=0, then b is a root 

of the polynomial equation f(x)=0 or is a zero of the polynomial f(x). If (x-b)
r
 is 

a factor of f(x) but (x-b)
r+1 

is not a factor of f(x), then b is a root of f(x) of 

multiplicity r: a root of multiplicity 1 is called a simple root. Thus 2 is a simple 

root of x
3
-8=0 but 2 is a root of multiplicity 3 of (x-2)

3
(x+3)=0. 

Example1.35 Show that 1-
C
�!+ C!CH�2


! +⋯+ !−121 C!CH�2…!CH1/�21! =
!H�2D
1! !V − 12… !V − '2. 

»1,…,n are all zeros of the polynomial on the left; by factor theorem, each of (x-

1),…,(x-n) are factors of the polynomial and hence (x-1)…(x-n) is a factor of 

the n th degree polynomial on the left; equating coefficient of x
n
 from both side, 

we get the constant of proportionality 
!H�2D
1!  on the right. 

 

 

T h e o r e m  1 . 4  ( Fundamental Theorem of Classical Algebra) 

Every polynomial equation of degree≥1 has a root, real or complex. 

Corollary A polynomial equation of degree n has exactly n roots, multiplicity 

of each root being taken into account. 

Corollary If a polynomial f(x) of degree n vanishes for more than n distinct 

values of x, then f(x) =0 for all values of x. 

Example1.36 x2
-4=(x+2)(x-2) is an identity since it is satisfied by more than 

two values of x; in contrast (x-1)(x-2)=0 is an equality and not an identity. 

T h e o r e m  1 . 5 If b is a multiple root of the polynomial equation f(x)=0 of 

multiplicity r, then b is a multiple root of f
(1)

(x)=0 of multiplicity r-1. Thus to 

find the multiple roots of a polynomial equation f(x)=0, we find the h.c.f. g(x) 

of the polynomials f(x) and f
(1)

(x). The roots of g(x)=0 are the multiple roots of 

f(x)=0. 

Example1.37 Find the multiple roots of the equation 

x
5
+2x

4
+2x

3
+4x

2
+x+2=0. 
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Let f(x)=x
5
+2x

4
+2x

3
+4x

2
+x+2. Then f

(1)
(x)=5x

4
+8x

3
+6x

2
+8x+1. The h.c.f. of f 

and f
(1)

 are obtained by method of repeated division(at each stage, we can 

multiply by a constant of proportionality to our convenience; that does not 

affect the outcome): 

5  8  6  8  1 |  1           2           2           4           1          2 

            (x 5)   5           10         10        20         5         10 

                     …5……  8……   6……  8……  1…………. 

         2           4        12          4        10 

(x5)                10         20        60        20        50 

                                  10         16        12         16         2 

   ………………………………………………….. 

           4         48   4         48 

  (x1/4)         1          12          1         12 

 

1       12       1       12 |      5 8   6    8      1 

             5       60          5         60 

         …………………………………………. 

             -52    1   -52       1 

             -52      -624     -52      -624 

             …………………………………………… 

       625         0       625 

 (x1/625)                         1            0        1          

 

1      0       1 |   1         12         1          12 

               1           0         1 

  …………………………. 

        12         0        12 
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        12         0        12 

       …………………………….. 

Thus the h.c.f. is x
2
+1. Thus f(x)=0 has two double roots( that is, multiple roots 

of multiplicity 2) i and –i. 

   

Polynomial equations with Real Coefficients 

T h e o r e m  1 . 6 If a+ib is a root of multiplicity r of  the polynomial equation 

f(x)=0 with real coefficients, then a-ib is a root of multiplicity r of f(x)=0. 

N o t e 1+i  is a root of x
2
-(1+i)x=0 but not so is 1-i.  

Example1.38 Prove that the roots of 
�

CH� + 

CH
+ �

CH� = �
C are all real. 

» The given equation is 
�

CH�+
Y

CH
+
K

CH�=-5 (*). Let a+ib be a root of the 

polynomial equation (*) with real coefficients. Then a-ib is also a root of 

(*).Thus 
�

!pH�2/0n+
Y

!pH
2/0n+
K

!pH�2/0n=-5 and 
�

!pH�2H0n+
Y

!pH
2H0n+
K

!pH�2H0n=-5. 

Subtracting,-2ib[
�

!pH�2�/n� + Y
!pH
2�/n� + K

!pH�2�/n�]=0 which gives b=0. Hence 

all roots of given equation must be real. 

Example1.39 Prove that the roots of 
�

C/p� +⋯+ �
C/pD =

�
C/n are all real 

where a1,…,an,b are all positive real numbers and b>ai for all i. 

Example1.40 Solve the equation f(x)=x
4
+x

2
-2x+6=0 , given that 1+i is a 

root. 

» Since f(x)=0 is a polynomial equation with real coefficients, 1-i is also a root 

of f(x)=0. By factor theorem, (x-1-i)(x-1+i)=x
2
-2x+2 is a factor of f(x). By 

division, f(x)=( x
2
-2x+2)(x

2
+2x+3). Roots of x

2
+2x+3=0 are -1±√2i. Hence the 

roots of f(x)=0 are 1±i, -1±√2i. 

T h e o r e m  1 . 7 If a+√� is a root of multiplicity r of the polynomial equation 

f(x)=0 with rational coefficients, then a-√� is a root of multiplicity r of f(x)=0 

where a,b are rational and b is not a perfect square of a rational number.  

Since every polynomial with real coefficients is a continuous function from R to 

R, we have 
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T h e o r e m  1 . 8  (Intermediate Value Property) Let f(x) be a polynomial with 

real coefficients and a,b are distinct real numbers such that f(a) and f(b) are of 

opposite signs. Then f(x)=0 has an odd number of roots between a and b. If f(a) 

and f(b) are of same sign, then there is an even number of roots of f(x)=0 

between a and b. 

Example1.41Show that for all real values of a, the equation (x+3)(x+1)(x-

2)(x-4)+a(x+2)(x-1)(x-3)=0 has all its roots real and simple. 

»Let f(x)= (x+3)(x+1)(x-2)(x-4)+a(x+2)(x-1)(x-3). Then limC→Hv w!V2=∞, f(-

2)<0, f(1)>0, f(3)<0,limC→v w!V2=∞. Thus each of the intervals (−∞,-2),(-

2,1),(1,3),(3,	∞) contains a real root of f(x)=0. Since the equation is of degree 4, 

all its roots are real and simple. 

T h e o r e m  1 . 9 (Rolle’s Theorem) Let f(x) be a polynomial with real 

coefficients . Between two distinct real roots of f(x)=0 ,there is at least one real 

root of f
(1)

(x)=0. 

N o t e  

(1) Between two consecutive real roots of f
(1)

(x)=0, there is at most one real 

root of f(x)=0. 

(2) If all the roots of f(x)=0 be real and distinct, then all the roots of f
(1)

(x)=0 

are also  real and distinct. 

Example1.42Show that the equation f(x)=(x-a)
3
+(x-b)

3
+(x-c)

3
+(x-d)

3
=0, 

where a,b,c,d are not all equal , has only one real root. 

» Since f(x)=0 is a cubic polynomial equation with real coefficients, f(x)=0 has 

either one or three real roots. If J be a real multiple root of f(x)=0 with 

multiplicity 3, then J is also a real root of f
(1)

(x)=3[(x-a)
2
+(x-b)

2
+(x-c)

2
+(x-

d)
2
]=0, and hence J=a=b=c=d (since J,a,b,c,d are real), contradiction. If f(x)=0 

has two distinct real roots, then in between should lie a real root of f
(1)

(x)=0, 

contradiction since not all of a,b,c,d are equal. Hence f(x)=0 has only one real 

root. 

Example1.43 Find the range of values of k for which the equation 

f(x)=x
4
+4x

3
-2x

2
-12x+k=0 has four real and unequal roots. 

» Roots of f
(1)

(x)=0 are -3,-1,1. Since all the roots of f(x)=0 are to be real and 

distinct, they will be separated by the roots of  f
(1)

(x)=0. Now 

limC→Hv w!V2=∞,f(-3)=-9+k,f(-1)=7+k,f(1)=-9+k,limC→v w!V2=∞. Since f(-

3)<0, f(-1)>0 and f(1)<0, -7<k<9. 
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Example1.44 If c1,c2,…,cn be the roots of x
n
+nax+b=0, prove that (c1-c2)(c1-

c3)…(c1-cn)=n(c1
n-1

+a). 

» By factor theorem, x
n
+nax+b=(x-c1)(x-c2)…(x-cn).Differentiating w.r.t. x, 

n(x
n-1

+a)=(x-c2)…(x-cn)+(x-c1)(x-c3)…(x-cn)+…+(x-c2)(x-c3)…(x-cn).  

Replacing x by c1 in this identity, we obtain the result. 

Example1.45 If a is a double root of f(x)=x
n
+p1x

n-1
+…+pn=0, prove that a is 

also a root of p1x
n-1

+2p2x
n-2

+…+npn=0. 

» Since a is a double root of f(x)=0, both f(a)=0 and f
(1)

(a)=0 hold. Thus a
n
+p1a

n-

1
+…+pn=0 (1) and na

n-1
+(n-1)p1a

n-2
+…+pn-1=0(2). Multiplying both side of (1) 

by n and both side of (2) by a and subtracting, we get p1a
n-1

+2p2a
n-

2
+…+npn=0.Hence the result. 

Example1.46 Prove that the equation f(x)=1+x+
C�

!+…+

CD
1!=0 cannot have a 

multiple root. 

» If a is a multiple root of f(x)=0, then 1+a+
p�

!+…+

pD
1!=0 and 

1+a+
p�

!+…+

pDE�
!1H�2!=0;it thus follows  that 

pD
1!=0, so that a=0; but 0 is not a root of 

given equation. Hence no multiple root. 

Descartes’ Rule of signs 

T h e o r e m  1 . 1 0 The number of positive roots of an equation f(x)=0 with 

real coefficients does not exceed the number of variations of signs in the 

sequence of the coefficients of f(x) and if less, it is less by an even number. 

The number of negative roots of an equation f(x)=0 with real coefficients does 

not exceed the number of variations of signs in the sequence of the coefficients 

of f(-x) and if less, it is less by an even number. 

Example1.47  If f(x)=2x
3
+7x

2
-2x-3 , express f(x-1) as a polynomial in x. 

Apply Descartes’ rule of signs to both the equations f(x)=0 and f(-x)=0 to 

determine the exact number of positive and negative roots of f(x)=0. 

» By using method of synthetic division, f(x)=2(x+1)
3
+(x+1)

2
-10(x+1)+4. Let 

g(x)=f(x-1)=2x
3
+x

2
-10x+4. By Descartes’ Rule, g(x)=0 has exactly one 

negative root, say, c. Thus g(c)=f(c-1)=0; hence c-1(<0) is a negative root of 

f(x)=0. Since there are 2 variations of signs in the sequence of coefficients of f(-

x)and since c-1 is a negative root of f(x)=0, f(x)=0 has two negative roots. Also, 

f(x)=0 has exactly one positive root ,by Descartes’ rule.  
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Sturm’s Method of location of real roots of a polynomial equation with real 

coefficients 

Let f be a polynomial with real coefficients  and f1 be its first derivative. Let the 

operation of finding the h.c.f. of f and f1be performed with the following 

modifications: The sign of each remainder is to be changed before it is used as 

the next divisor and the sign of the last remainder is also to be changed. Let the 

modified remainders be denoted f2,…,fr. f,f1,f2,…,fr are called Sturm’s 

functions. During the process of finding Sturm’s functions, at any step, we can 

multiply by positive constant but not by a negative constant. 

Sturm’s Theorem 

T h e o r e m  1 . 1 1  Let f be a polynomial with real coefficients and a,b be 

real numbers, a<b. The number of real roots of f(x)=0 lying between a and b (a 

multiple root, if there be any, being counted only once) is equal to the excess of 

the number of changes of signs in the sequence of Sturm’s functions f,f1,…,fr 

when x=a over the number of changes of signs in the sequence when x=b. 

Example1.48Find the number and position of the real roots of the equation 

x
3
-3x+1=0. 

Let f(x)=x
3
-3x+1. f

(1)
(x)=3(x

2
-1). f1(x)=x

2
-1.The remainder on dividing f by f1 is 

-2x+1. Thus f2=2x-1. Dividing 2f1 by f2 (and multiplying by 2 at an intermediate 

step), the remainder is -3; hence f3 is 1. 

  f  f1  f2  f3 No.of changes of sign 

-∞  -  +  -  + 3 

0  +  -  -  + 2 

∞  +  +  +  + 0 

Hence the equation has 3 real roots,(3-2=)1 negative root and (2-0=)2 positive 

roots. 

Location of roots 

  f  f1  f2  f3 No.of changes of sign 

-2  -  +  -  + 3 

-1 +  0  -  + 2(0 to be  

treated as continuation) 
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0                     +                     -                     -                       +            2 

1 -                    0                   +                      +            1 

2 +                   +                    +                      +            0 

Thus one root lies between -2 and -1; one lies between 0 and 1 and one lies 

between 1 and 2. 

NoteIf at any stage of finding out the sequence of Sturm’s sequence, we obtain 

a function all of whose roots are complex, then the h.c.f. process need not be 

continued further and the determination and location of real roots will be 

possible from the set of functions f,f1,…,fs. This is because fsretains same sign 

for all values of x and no alteration in the number of changes of sign can take 

place in the sequence of functions beyond fs. 

Example1.49Find the number and position of the real roots of the equation 

x
4
+4x

3
-x

2
-2x-5=0. 

f(x)=x
4
+4x

3
-x

2
-2x-5, f1(x)=2x

3
+6x

2
-x-1, f2(x)=7x

2
+2x+9. We can verify all the 

roots of f2=0 are complex and leading coefficient of f2 is positive; hence f2(x)>0 

for all real x. Hence the remaining Sturm functions need not be calculated. 

 f                            f1                        f2            No. of changes of 

sign 

-∞ +                            -                        +               2  

0 -                             -                        +                1 

∞ +                            +                        +                0 

The equation has two real roots, one positive and one negative. 

 

Relations between roots and coefficients 

Let c1,…,cn be the roots of the equation a0x
n
+a1x

n-1
+…+an-1x+an=0. By factor 

theorem,  

a0x
n
+a1x

n-1
+…+an-1x+an=a0(x-c1)(x-c2)…(x-cn). 

Equating coefficients of like powers of x,a1=a0!−∑ c�2, a2=a0∑c� c
,….,an=a0 (-

1)
n
c1c2…cn. Hence  

∑c�=-
p�
py,∑c� c
=

p�
py,…, c1c2…cn=(-1)

npD
py. 
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Example1.50 Solve the equation 2x
3
-x

2
-18x+9=0 if two of the roots are 

equal in magnitude but opposite in signs. 

» Let the roots be -a, a, b .Using relations between roots and coefficients, b=(-

a)+a+b=
�

 and –a

2
b=-

K

. Hence a

2
=9, that is, a=±3. Hence the roots are 3,-3,

�

. 

Example1.51  Solve x
3
+6x

2
+11x+6=0 given that the roots are in A.P. 

Symmetric functions of roots 

A function f of two or more variables is symmetric if f remains unaltered by an 

interchange of any two of the variables of which f is a function. A symmetric 

function of the roots of a plolynomial equation which is sum of a number of 

terms of the same type is represented by any one of its terms with a sigma 

notation before it: for example, if a,b,c be the roots of a cubic polynomial, then 

∑�
 will stand for a
2
+b

2
+c

2
. 

Example1.52 If a,b,c be the roots of x
3
+px

2
+qx+r=0, find the value of 

(1)∑�
, (2)∑�
 �, (3) ∑��,(4)∑�
 �
,(5)	∑ �
p,(6)	∑ �

pn,(7)	∑ �
p�. 

» (1)∑�
=!∑�2
 − 2∑��=p
2
-2q, (2) ∑�
 �=∑�∑� � -3abc=-pq+3r, 

(3)∑��=∑�
∑�-∑�
 �, (4) ∑�
 �
=!∑��2
-2abc∑�, (5) ∑ �
p=

∑pn
pn+ , (6) 

∑ �
pn=

∑p
pn+, (7)	∑ �

p�=�∑ �
p�


 − 2∑ �
pn. 

T h e o r e m  1 . 1 1 ( Newton) Let a1,…,an be the roots of  x
n
+p1x

n-1
+p2x

n-

2
+…+pn=0, sr=a1

r
+…+an

r
 where r is a non-negative integer. Then  

(1) sr+p1sr-1+p2sr-2+….+pr-1s1+rpr=0, if 1≤ z ≤ ' 

(2) sr+p1sr-1+p2sr-2+….+pnsr-n=0, if r≥n 

Example1.53 If a1,a2,a3,a4 be the roots of the equation x
4
+p2x

2
+p3x+p4=0, 

find the value of (1)∑���, (2)∑��Y,(3)∑��M. 

»(1)By Newton’s Theorem, s3+p2s1+3p3=0. Here s1=0.Thus s3=-3p3. 

(2)By Newton’s Theorem, s4+p2s2+p3s1+4p4=0. Here s1=0 and s2=-2p2. Thus 

s4=2(p2
2
-2p4) 

(3)s6+p2s4+p3s3+p4s2=0. Hence s6=6p4p2+3p3
2
-2p2

3
. 

 

Transformation of equations 
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When a polynomial equation is given, it may be possible , without knowing the 

individual roots, to obtain a new equation whose roots are connected with those 

of the given equation by some assigned relation. The method of finding the new 

equation is said to be a transformation. Study of the transformed equation may 

throw some light on the nature of roots of the original equation. 

(1) Let c1,…,cn be the roots of a0x
n
+a1x

n-1
+…+an-1x+an=0; to obtain the 

equation whose roots are mc1,mc2,…,mcn. (m=-1 is an interesting case) 

» Let d1=mc1. Since c1 is a root of a0x
n
+a1x

n-1
+…+an-1x+an=0, we have 

a0c1
n
+a1c1

n-1
+…+an-1c1+an=0. Replacing c1 by d1/m, we get a0d1

n
+ma1d1

n-

1
+m

2
a2d1

n-2
+…+m

n-1
an-1d1+m

n
an=0. Thus the required equation is 

a0x
n
+ma1x

n-1
+…+m

n-1
an-1x+m

n
an=0. 

(2) Let c1,…,cn be the roots of a0x
n
+a1x

n-1
+…+an-1x+an=0 and let c1c2…cn≠0; 

to obtain the equation whose roots are 
�
+� , … ,

�
+D. 

» Let d1=
�
+�. So c1=

�
|�. Substituting in a0c1

n
+a1c1

n-1
+…+an-1c1+an=0, we get 

a0+a1d1+a2d1
2
+…+an-1d1

n-1
+an d1

n
=0. Thus 

�
+� , … ,

�
+D are the roots of 

anx
n
+an-1x

n-1
+…+a1x+a0=0.  

(3) Find the equation whose roots are the roots of f(x)=x
4
-8x

2
+8x+6=0, each 

diminished by 2. 

» f(x)=(x-2)
4
+8(x-2)

3
+16(x-2)

2
+8(x-2)+6=0(by method of synthetic 

division). Undertaking the transformation y=x-2, the required equation is 

y
4
+8y

3
+16y

2
+8y+6=0 

Example1.54 If a,b,c be the roots of the equation x
3
+qx+r=0, find the 

equation whose roots are (1) a(b+c),b(c+a),c(a+b), (2) a
2
+b

2
,b

2
+c

2
,c

2
+a

2
, (3) 

b+c-2a,c+a-2b,a+b-2c. 

(1) »a(b+c)=∑�� − �c=q-
pn+
p =q+

}
p. Thus the transformation is y=q+

}
C. 

sustituting x=
}

TH) in x
3
+qx+r=0 and simplifying, we obtain the required 

equation. 

(2) »a
2
+b

2
=∑�
-c

2
=-2∑��-c

2
=-2q-c

2
; hence the transformation is y=-2q-x

2
, 

or, x
2
=-(y+2q). the given equation can be written as x

2
(x

2
+q)

2
=r

2
; thus the 

transformed equation is (y+2q)(y+q)
2
=- r

2
. 

(3) »b+c-2a=∑�-3a=-3a; the transformation is y=-3x. 

Example1.55 Obtain the equation whose roots exceed the roots of 

x
4
+3x

2
+8x+3=0 by 1. Use Descartes’ Rule of signs to both the equations to find 

the exact number of real and complex roots of the given equation. 
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» Let f(x)= x
4
+3x

2
+8x+3=(x+1)

4
-4(x+1)

3
+9(x+1)

2
-2(x+1)-1 (by method of 

synthetic division). By Descartes’ rule, f(-x) has two variations of signs in its 

coefficients and hence f(x)=0 has either two negative roots or no negative roots; 

also f(x)=0 has no positive root(since there is no variation of signs in the 

sequence of coefficients of f). Undertaking the transformation y=x+1, f(x)=0 

transforms to g(y)=y
4
-4y

3
+9y

2
-2y-1; considering g(-y), by Descrtes’ Rule, 

g(y)=0 has a negeative root, say,a. Then f(x)=0 has a-1 as a negative root; the 

conclusion is f(x)=0 has two negative root, no positive root, does not have 0 as 

one of its roots and consequently exactly two complex conjugate roots (since 

coefficients of f are all real). 

Example1.56 Find the equation whose roots are squares of the roots of the 

equation x
4
-x

3
+2x

2
-x+1=0 and use Descartes’rule of signs to the resulting 

equation to deduce that the given equation has no real root. 

»The given equation, after squaring, can be written as (x
4
+2x

2
+1)

2
=x

2
(x

2
+1)

2
 ; 

undertaking the transformation y=x
2
, the transformed equation is 

(y
2
+2y+1)

2
=y(y+1)

2
, that is, y

4
+3y

3
+4y

2
+3y+1=0. The transformed equation, 

whose roots are squares of the roots of the original equation, has no nonnegative 

root by Descartes’ Rule of signs; hence the original equation has no real root. 

Example1.57  The roots of the equation x
3
+px

2
+qx+r=0 are a,b,c. Find the 

equation whose roots are a+b-2c,b+c-2a,c+a-2b. Deduce the condition that the 

roots of the given equation may be in A.P. 

»a+b-2c=∑� − 3c=-p-3c. We undertake a transformation y=-p-3x, or,x=− T/(
� . 

Thus the equation whose roots are a+b-2c,b+c-2a,c+a-2b is (y+p)
3
-

3p(y+p)
2
+9q(y+p)-27r=0. If the roots of given equation are in A.P., at least one 

root of transformed equation is zero, that is , the product of all the roots of the 

transformed equation is 0. Hence the condition is 2p
3
-9pq+27r=0. 

Example1.58 Find the equation whose roots are cube of the roots of the 

equation x
3
+4x

2
+1=0. 

»Let the roots of the given equation be a,b,c. Then x
3
+4x

2
+1=(x-a)(x-b)(x-c). In 

this identity, we replace x by xw and xw
2
, where w is the imaginary cube roots 

of unity, to obtain 

x
3
+1+4x

2
=(x-a)(x-b)(x-c) 

x
3
+1+4x

2
w

2
=(xw-a)(xw-b)(xw-c)=(x-aw

2
)(x-bw

2
)(x-cw

2
) 

x
3
+1+4x

2
w=(xw

2
-a)(xw

2
-b)(xw

2
-c)=(x-aw)(x-bw)(x-cw) 
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Multiplying respective sides,  

(x
3
+1)

3
+(4x

2
)

3
=(x

3
-a

3
)(x

3
-b

3
)(x

3
-c

3
). 

Undertaking the transformation y=x
3
, (y+1)

3
+4y

2
=(y-a

3
)(y-b

3
)(y-c

3
). 

Thus the equation whose roots are a
3
,b

3
,c

3
 is (y+1)

3
+4y

2
=0, or, y

3
+7y

2
+3y+1=0. 

Cardan’s Method of solving a cubic equation 

Example1.59 Solve the equation:x
3
-15x

2
-33x+847=0. 

Step 1 To transform the equation into one which lacks the second degree term. 

Let x=y+h. The transformed equation is y
3
+(3h-15)y

2
+(3h

2
-30h-33)y+(h

3
-15h

2
-

33h+847)=0. Equating coefficient of y
2
 to zero, h=5. Thus the transformed 

equation is y
3
-108y+432=0 (*) 

Step 2 Cardan’s Method 

Let a=u+v be a solution of (*). Then a
3
-108a+432=0 .also a

3
=u

3
+v

3
+3uv(u+v)= 

u
3
+v

3
+3uva; so a

3
-3uva-(u

3
+v

3
)=0. Comparing, uv=36 and u

3
+v

3
=-432. Hence 

u
3
 and v

3
 are the roots of t

2
+432t+36

3
=0. Hence u

3
=-216=v

3
. The three values of 

u are -6,-6w and -6w
2
, where w is an imaginarycube roots of unite. Since 

uv=36, the corresponding values of v are -6,-6w
2
,-6w. Thus the roots of (*) are -

12,6,6 and thus the roots of the given equation are (using x=y+5) -7,11,11. 

Example1.60 Solve the equation:x
3
+6x

2
+12x-9=0. 

Example1.61 Solve the equation:x
3
-3x-1=0. 

Example1.62 Solve the equation:x
3
-12x-65=0. 

 

FERRARI’S METHOD OF SOLVING A BIQUADRATIC EQUATION 

We try to write down the given biquadratic equation ax
4
+4bx

3
+6cx

2
+4dx+e=0 

in the form (ax
2
+2bx+p)

2
-(mx+n)

2
=0; equating coefficients of like powers of x, 

we get p,m,n; in the process we express the given biquadratic expression as 

product of two quadratic expressions and hence solve the given equation. 

Example1.61  Solve the equation x
4
-10x

3
+35x

2
-50 x+24=0. 
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»We try to find p,m,n such that the given equation can be written in the form 

(x
2
-5x+p)

2
-(mx+n)

2
=0. Equating coefficients of like powers of x, we get 

35=25+2p-m
2
,-50=-10p-2mn and 24=p

2
-n

2
. Eliminating m and n,  

(p
2
-24)(2p-10)=m

2
n

2
=(5p-25)

2
 (*) 

p=5 is a solution of (*), hence m=0,n=±1. Thus the given equation is (x
2
-

5x+5)
2
-1=0, that is, (x

2
-5x+6)(x

2
-5x+4)=0. Hence the roots of given equation 

are 1,2,3,4. 

Example1.62 Solve the equation x
4
+12x-5=0. 

»We try to find p,m,n such that the given equation can be written in the form 

(x
2
+p)

2
-(mx+n)

2
=0; equating coefficients of like powers of x, we get p

2
-n

2
=-5, 

2mn=-12,2p-m
2
=0. Eliminating m,n, we get 36=m

2
n

2
=(p

2
+5)2p; hence p=2. 

Thus m=±2, n=±3. Since mn=-6<0, we take m=2, n=-3. Thus the given 

equation can be written in the form (x
2
+2)

2
-(2x-3)

2
=0, that is, x

2
+2x-5=0 and x

2
-

2x+5=0. Hence the roots of given equation are -1±√2, 1±2i. 

 

A B S T R A C T  A L G E B R A  

                                                                        

CHAPTER III 

SETS AND FUNCTIONS 

In Mathematics, we define a mathematical concept in terms of more elementary 

concept(s).For example, the definition of perpendicularity between two straight 

lines is given in terms of the more basic concept of angle between two straight 

lines. The concept of set is such a basic one that it is difficult to define this 

concept in terms of more elementary concept. Accordingly, we do not define 

‘set’ but to explain the concept intuitively we say:  a set is a collection of 

objects having the property that given any abstract (the thought of getting 

100%marks at the term-end examination) or concrete (student having a 

particular Roll No. of semester II mathematics general) objet, we can say 
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without any ambiguity whether that object belongs to the collection(collection 

of all thoughts that came to one’s mind on a particular day or the collection of 

all students of this class) or not. For example, the collection of ‘good’ students 

of semester II will not be a set unless the criteria of ‘goodness’ is made explicit! 

The objects of which a set A is constituted of are called elements of the set A. If 

x is an element of a set A, we write x∈A; otherwise x∉A. If every element of a 

set X is an element of set Y,X is a subset of Y, written as X ⊆Y. X is a proper 

subset of Y if X ⊆Y and   Y⊈X, written as	� ⊊ �. For two sets X = Y iff (if and 

only if, bi-implication) X ⊆Y and Y⊆X. A set having no element is called null 

set, denoted by ∅.  

Example1.1 a≠{a} (a letter inside an envelope is different from a letter without 

envelope!2, {a}∈{a,{a}}, {a}⊊{a,{a}}, ∅ ⊂A(the premise x∈ ∅	 of the 

implication x∈ ∅	 ⇒ x∈ �	 is false and so the implication holds vacuously	!), 
A⊆A, for every set A. 

Set Operations: formation of new sets 

Let X and Y be two sets. Union of X and Y, denoted by X∪Y, is the set {a| a∈X 

or a∈Y or both}. Intersection of X and Y, denoted by X∩ �, is the set {a| a∈X 

and a∈Y}. The set difference of X and Y, denoted by X-Y, is the set {a| a∈X 

and a∉ Y}. The set difference U-X is called complement of the set X, denoted 

by X
/
, where U is the universal set. The symmetric  set difference of X and Y, 

denoted by X��, is the set (X-Y) U(Y-X). For any set X, the power set of X, 

P(X), is the set of all subsets of X. Two sets X and Y are disjoint iff X∩ � = ∅. 

The Cartesian product of X and Y, denoted by X X Y, is defined as the set 

{(x,y)| x∈X, y∈Y} [ (x,y) is called an ordered pair. Two ordered pairs (x,y) and 

(u,v) are equal, written (x,y) = (u,v), iff x = u and y = v]. If we take X = {1,2} 

and Y = {3}, then X X Y = {(1,3),(2,3)} ≠{(3,1),(3,2)} = Y X X. Thus 
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Cartesian product between two distinct sets are not necessarily commutative 

(Is ∅	�	�1� = �1��	∅ ?). 

Laws governing set operations 

For sets X, Y, Z,  

� Idempotent laws: X∪ � = �, X∩X = X 

� Commutative laws: X∪Y = Y∪X, X∩Y = Y∩ � 

� Associative Laws: (X∪Y)	∪Z = X∪(Y∪Z), (X∩Y)	∩Z = X∩(Y∩ �2 
� Distributive laws: X∪(Y∩Z) = (X∪ �2 ∩(X∪Z), X∩(Y∪Z) = (X∩
�2 ∪(X∩Z) 

� Absorptive laws: X∩(X∪Y)=X, X∪(X∩Y)=X 

� De’ Morgan’s laws: X-(Y∪Z) = (X-Y)	∩(X-Z), X-(Y∩Z) = (X-Y)	∪(X-

Z) 

Note: We may compare between usual addition and multiplication of real 

numbers on one hand and union and intersection of sets on the other. We see 

that the analogy is not complete e.g. union and intersection both are distributive 

over the other but addition is not distributive over multiplication though 

multiplication over addition is. Also A∪ � = �, for all set A but a.a = a does not 

hold for all real a. 

Example1.2 Let A, B, C be three sets such that A∩C = B∩C and A∩C
/
 = B∩C

/
 

holds. Prove that A = B. 

» A = A∩U (U stands for the universal set conerned) = A∩(C∪C
/
)(definition of 

complement of a set) = (A∩C)	∪(A∩C
/
)(distributivity of ∩ over∪2 = 

(B∩C)	∪(B∩C
/
)(given conditions)= B∩(C∪C

/
)(distributivity of ∩ d�iz	 ∪2=B. 

NOTE  Make a habit of citing appropriate law at each step as far as 

practicable. 
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Example1.3 Let A, B, C be three sets such that A∩B = A∩C and A∪B = A∪ =, 

then prove B = C.  

» B = B∪(A∩B) = B∪(A∩ =) = (B∪A)	∩(B∪C) (distributivity of ∪ over∩) = 

(C∪A)	∩(B∪C) = C∪(A∩B)= C∪(A∩ =) = C. 

Example1.4 A�= = ��= implies A = B: prove or disprove. 

NOTE: Proving will involve consideration of arbitrary sets A,B,C satisfying 

the given condition, whereas disproving consists of giving counter-examples of 

three particular sets A,B,C that satisfies the hypothesis A�= = ��= but for 

which the conclusion A = B is false. 

» This is a true statement. We first prove A⊆B.  Let  x∈A. 

Case 1  x∈C. Then x∉ (A-C)	∪(C-A) = A�= = ��= = (B-C)	∪(C-B). Thus 

x∉ = − �. Since x∈C, x∈ �.  

Case 2 x∉C. x∈ (A-C)	⊆ A�= = ��= = (B-C)	∪(C-B). Since x∉C, x∉C-B. 

Thus  x∈B-C. So  x∈ �. 

Combining the two cases, we see A⊆ �. Similarly, B⊆A. Combining, A = B. 

Example1.5 Prove or disprove: (A-B)
/
 = (B-A)

/
. 

» This is a FALSE statement. COUNTEREXAMPLE: Let U = A = {1,2}, B = 

{1}.Then (A-B)
/
 = {1} ≠ (B-A)

/
 = {1,2}. 

Example1.6 Prove: [(A-B)	∪(A∩B)]	∩[(B-A)	∪(A∪B)
/
] = ∅  

» By distributivity,[(A-B) ∩(B-A)]	∪[(A-B)	∩ ! A∪ B)
/
]	∪[(A∩B)	∩ !B −

A2	]	∪[(A∩B)	∩ !� ∪ �2]	/]= ∅ ∪[(A-B)	∩(A
/∩B

/
)]∪ ∅ ∪ ∅ = ∅. 

PRACTICE SUMS 

1. Prove or disprove: A∪(B-C) = (A∪B) – (A∪C) 
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2. Prove or disprove: A-C = B-C iff A∪C = B∪C.( ‘IFF’ stands for’ if and 

only if’) 

3. Prove :A X (B∪C) = (A X B)	∪ (A X C) 

NOTATION: N,Z,Q,R,C will denote set of all positive integers, integers, 

rational numbers ,real numbers  and the complex numbers respectively. 

BINARY RELATIONS 

Definition1.1Abinary relationR from a set A to a set B is a subset 

of AxB.A binary relation (we shall often refer to as relation) from 

A to A is called a binary relation on A. If (a,b)∈R, we say a is R-

related to b, written as aRb. 

Example1.7  Let A={1,2,3} and R={(1,1),(1,3)}. Then 1R3 holds but 

3R1 does not hold. 

Example1.8  Let A be a set and P(A) denote the power set of A. Given 

any two subsets X and Y of A, that is, X,Y∈P(A), either X⊆Y or X⊈Y. 

Thus ⊆ is a binary relation on P(A). 

Example1.9 R={(x,y) ∈R2/ x2+y2=9} is a relation on R. 

Definition1.2Let R be a binary relation on a set A.  

• R is reflexiveiffaRa holds ∀a∈A 

• R is symmetriciffa,b∈A and aRbimplybRa 

• R is transitiveiffa,b,c∈A, aRb,bRcimply aRc 

• R is an equivalence relationon Aiff R is reflexive,symmetric 

and transitive. 
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Example1.10 Let R be a relation defined on Z by aRbiff ab≥0. R is 

reflexive, symmetric but not transitive: -5R0,0R7but -5R7 does 

not hold. 

Example1.11 Let S be a binary relation on the set R of real numbers . 

xSyiff Reflexive Symmetric Transitive 

y=2x X X X 

x<y X X Yes 

x≠y X Yes X 

xy>0 X Yes Yes 

y≠ V +2 Yes X X 

x≤y Yes X Yes 

xy≥0 Yes Yes X 

x=y Yes Yes Yes 

 

Definition 1.2Let R be an equivalence relation  on a set A. Let a∈A. 

[a]={x∈A/xRa} (⊆A) is the equivalence class determined by a with 

respect to R. 

Definition 1.3Let A be a nonempty set andPbe a collection of 

nonempty subsets of A. Then P is a partition of Aiff 

(1) for X,Y∈P, either X=Y or X∩Y=∅    and   (2) A=⋃ ��∈� . 

Theorem 1.1 :Let R be an equivalence relation  on a set A. Then 

(1) [a]≠ ∅, ∀a∈A,  



 

30 

 

(2) b∈[a] iff [b]=[a],  

(3) either [a]=[b]or [a]	∩ [b]=∅,  

(4) A=⋃ [�]p∈� .  

Thus {[a]/ a∈A} is a partition of A. 

Proof: (1) since R is reflexive, (a,a)∈R ∀a∈A. Thus a∈[a]. Hence 

[a]≠ ∅, ∀a∈A. 

(2) if [b]=[a], then b∈[b]=[a]. Conversely, let b∈[a]. Then aRb. For 

x∈[a], xRa holds and , by transitivity of R, xRb holds, that is , x∈[b]. 

Hence [a]⊆[b]. Similarly [b]⊆[a] can be proved . Hence [b]=[a]. 

(3) Let [a]	∩ [b]≠ ∅. Let x∈[a]	∩ [b]. Then aRx, xRb imply aRb, that 

is, [a]=[b]. 

(4) by definition, [a]⊆A, a∈A. Thus,⋃ [�]p∈� ⊆A. conversely, let 

b∈A. Then b∈[b]⊆⋃ [�]p∈� . Thus A⊆⋃ [�]p∈� .Hence A=⋃ [�]p∈� . 

Theorem 1.2 :Let P be a partition of a given set A. Define a relation 

R on A as follows: 

for all a,b∈A, aRbiff there exists B∈P such that a,b∈B.  

Then R is an equivalence relation on A. 

Proof: Left as an exercise. 
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Example1.12  Verify whether the following relations on the set R of 

real numbers are equivalence relations: (1) aRbiff|� − �| > 0, (22 
aRb iff 1+ab>0, (3) aRb iff|�|≤b 

Solution: (1)R is neither reflexive nor transitive but symmetric: 

1R0 and 0R1 hold but 1R1 does not hold. 

(2) R is reflexive and symmetric but not transitive:  

3R(-
�
K2 and (-

�
K2�!−62hold but 3R(-6) does not hold. 

(3)(-2)R(-2)does not hold: not reflexive. -2R5 holds but 5R-2 does 

not: R not symmetric. Let pRq and qRs hold. Then |*|≤q≤|�|≤s 

imply pRs hold. 

Example1.13 Verify whether the following relations on the set Z of 

integers are equivalence relations: (1) aRbiff|� − �| ≤ 3, (2) aRb 

iff a-b is a multiple of 6, (3) aRbiff a2-b2 is  a multiple of 7, (4) aRb 

iff |�| = |�|, (5) aRb iff 2a+b=41. 

Example1.14 Let X≠ ∅. Prove that the following conditions are 

equivalent: (1) Ris an equivalence relation on X, (2) R is reflexive 

and for all x,y,z∈X, xRy and yRz imply zRx, (3)R is reflexive and for 

all x,y,z∈X, xRy and xRz imply yRz. 

Example1.15 A relation R on the set of all nonzero complex numbers 

is defined by uRv iff  
 H¡
 /¡  is real. Prove that R is not an equivalence 

relation . 



 

32 

 

Solution: Note that iR2i, 2iR(-i) but (i,-i) does not belong to R. 

Example1.15 A relation S on R2 is defined by (a1,b1)S(a2,b2) 

iff¢��
 + ��
=¢�

 + �

. Prove that S is an equivalence relation 

and find equivalence class [(1,1)]. 

 

A function from a set A to a set B, denoted by f:  A→B, is a correspondence 

between elements of A and B having the properties: 

� For every x∈A, the corresponding element f(x)	∈ �.  f(x) is called the 

image of x under the correspondence f and x is called a pre-image of f(x). 

A is called domain and B is called the co-domain of the correspondence. 

Note that we differentiate between f, the correspondence, and f(x), the 

image of x under f. 

� For a fixed x∈A, f(x)	∈ � is unique. For two different elements x and y of 

A, images f(x) and f(y) may be same or may be different. 

In brief, a function is a correspondence under which  

� both existence and uniqueness of image of all elements of the domain 

is guaranteed but  

� neither the existence nor the uniqueness of pre-image of some 

element of co-domain is guaranteed. 

NOTATION Let f:A→B. For y∈B, f
-1

({y}) = ∅, if y has no preimage under f 

and stands for the set of all preimages if y has at least one preimage under f. For 

two elements  y1,y2∈B, f
-1

({y1,y2}) = f
-1

({y1})∪ f
-1

({y2}). 

For  C⊆A,  f(C) = {f(c)| c∈ =� , f(A) is called the range of f. 
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Example1.7 Prove that f(A∩B) ⊆f(A)	∩f(B) ; give a counterexample to 

establish that the reverse inclusion may not hold. 

» y ∈ f(A∩B)	⇒	y = f(x) , x ∈ A∩B	⇒	 y = f(x) , x ∈ A and x ∈ B ⇒ y ∈ f(A) 

and y ∈ f(B)	⇒ y ∈ f(A)	∩ f(B). Hence f(A∩B) ⊆ f(A)	∩ f(B). Consider the 

counterexample: f: R→R , f(x) = x
2 
, A = {2} , B = {-2}.  

Example1.8 Let f: R→R , f(x) = 3x
2
-5. f(x) = 70 implies x = ±5. Thus f

-1
{70} = 

{-5, 5}. Hence  f[f
-1

{70}] = {f(-5), f(-5)} = {70}. Also,  f
-1

({-11}) = ∅                              

[x∈ f
-1

({-11})⇒3x
2
-5=-11⇒x

2
=-2]. 

Example1.9 Let g: R→R, g(x) = 
C

C�/�. Find g
-1

({2}). 

PRACTICE SUMS 

Prove that (1) f(A∪B) =f(A)	∪f(B),  

                 (2) f
-1

(B1∪B2) = f
-1

(B1)	∪	f-1
(B2), 

                 (3) f
-1

(B1∩B2) = f
-1

(B1)	∩	f-1
(B2). 

A function under which uniqueness of pre-image is guaranteed is called an 

injective function. A function under which existence of pre-image is guaranteed 

is called a surjective function. Put in a different language, f: A→B is injective 

iff a1, a2∈A, f(a1) = f(a2) implies a1 = a2. The function f is surjective iff co-

domain and the range coincide. A function which is both injective and 

surjective is called bijective.  

NOTE: The injectivity, surjectivity and bijectivity depends very much on the 

domain and codomain sets and may well change with the variation of those sets 

even if expression of the function remains unaltered e.g. f:Z→Z, f(x) = x
2
 is not 

injective though g:N→Z, g(x) = x
2
 is injective. 
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Example1.10 f: R→R, f(x) = x
2
 – 3x+4. f(x1) = f(x2) implies (x1-x2)(x1+x2-3) = 

0. Thus f(1) = f(2) though 1≠2; hence f is not injective[Note: for establishing 

non-injectivity, it is sufficient to consider particular values of x]. Let y∈R and 

x∈	f-1
{y}. Then y = f(x) = x

2
 – 3x+4. We get a quadratic equation x

2
 – 3x+(4-y) 

= 0 whose roots, considered as a quadratic in x, give preimage(s) of y. But the 

quadratic will have real roots if the discriminant 4y-7≥0, that is , only when 

y≥7/4. Thus, for example, f
-1

{1} =∅. Hence f is not surjective. 

If f:A→B and g:B→C, we can define a function g0f:A→C, called the 

composition of f and g, by (g0f)(a) = g(f(a)), a∈A. 

Example1.11 f:Z →Z and g: Z →Z by f(n) = (-1)
n
 and g(n) = 2n. Then g0f: Z 

→Z, (g0f)(n)=g((-1)
n
) = 2(-1)

n
 and (f0g)(n) = (-1)

2n
. Thus g0f ≠ f0g. 

Commutativity of composition of functions need not hold. 

Note: Composition of functions, whenever is defined, is associative. 

PRACTICE SUMS 

Let f:A→B and g:B→ =.Then prove that: 

(1) if f and g are both injective, then g0f is so. 

[hints (g0f)(x)=(g0f)(y) ⇒g(f(x))=g(f(y)) ⇒f(x)=f(y) ⇒x=y] 

(2) If g0f is injective, then f is injective. 

(3) [hints f(x)=f(y) ⇒g(f(x))=g(f(y)) ⇒(g0f)(x)=(g0f)(y) ⇒x=y] 

(4) if f and g are both surjective, then g0f is so. 

[hints c∈C⇒∃b∈B,c=g(b) ⇒∃a∈A,b=f(a) ⇒c=g(b)=g(f(a))=(g0f)(a)] 

(5) If g0f is surjective, then f is surjective. 

Verify whether following functions are surjective and / or injective: 

(6) f:R→R, f(x) = x|V| 
(7) f: (-1,1)	→R, f(x) = 

C
�/|C| 
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Let f:A→B be a bijective function. We can define a function f
-1

: B→ A by f
-1

(y) 

= x iff f(x) = y. Convince yourself that because of uniqueness and existence of 

preimage under f ( since f is injective and surjective), f
-1

 is indeed a function. 

The function f
-1

 is called the inverse function to f. The graphs of f and f
-1

 for a 

given f can be seen here: ..\Documents\x8.mw 

Note Graph of f
-1 

can be obtained by reflecting the graph of f about line x=y. 

Example1.12 Let f: (0,1)	→(1/2,2/3) be defined by f(x) = 
C/�
C/
. Verify that f is 

bijective (DO IT!).  
[explanation:f(x)=f(y)⇒	C/�C/
=

T/�
T/
⇒x=y. Let c∈(1/2,2/3). If possible, let x be a 

pre-image of c under f, that is, f(x)=c. then c=
C/�
C/
 implying x=

�H
+
+H�  ∈(0,1) since 

-1/2<c-1<-1/3, -1/3<1-2c<0]. f
-1

: (1/2,2/3)	→ !0,12	is to be found. Now, let f
-

1
(y) = x, y∈ !1/2,2/32	. Then f(x) = y. So 

C/�
C/
=y and hence x = 

�H
T
TH�  = f

-1
(y). 

BINARY OPERATIONS 

Definition 1.10 Let A≠∅. A binary operation‘0’ on A is a function 

from Ax A to A. In other words , a binary operation ‘0’ on A is a 

rule of correspondence that assigns to each ordered pair (a1,a2)∈ 

A x A, some element of A, which we shall denote by a1 0a2. Note 

that a1 0a2need not bedistinct from a1 or a2. 

Example1.26 Subtraction is a binary operation on Z but not on N; 

division is a binary operation on the set Q* of all nonzero rational 

number but not on Z. 

Definition 1.11 Let 0be a binary operation on A≠∅.  
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(A,0)is called a mathematical system.  

0 is commutative iff x0y = y0x holds ,for all x,y∈A.  

0 is associativeiff x0(y0z) = (x0y)0z holds for all x,y,z∈A.  

An element e∈A is aleftidentity of the system (A,0) iff e0x = x holds 

∀x∈A.  

An element e∈A is a right identity of the system (A,0) iff x0e = x 

holds ∀x∈A.  

An element in a system which is both a left and a right identity of 

the system is called anidentityof the sytem.  

(A,0) be a system with an identity e and let x, y∈A such that x0y = e 

holds. Then y(x) is called aright inverseto x(x is a left inverseof y 

respectively) in (A,0).y	∈	A is an inverse to x∈A iff x0y=y0x=e. 

Example1.27 Consider the system (R,0) defined by x0y = x, ∀x,y∈R 

(R stands for the set of real numbers). Verify that 0 is non-

commutative, associative binary operation and that (R,0) has no 

left identity though(R,0) has infinite number of right identity. 

Example1.28 Verify that subtraction is neither associative nor 

commutative binary operation on Z. (Z,-) does not have any 

identity. 

Example1.29 Consider the system (Z,*) where the binary 

operation  * is defined by a*b = |� + �|, a,b∈Z. Verify that * is 
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commutative but not associative [ note: to show that *is not 

associative, it is sufficient to give an example, say,                            

{(-1) *2}*(-3)≠(-1) *{2*(-3)}].  

(Z,*) does not have an identity. 

Example1.30 (R,+) is commutative, associative, possesses an 

identity element 0 and every element of (R,+) has an inverse in 

(R,+). 

Note: From examples 1.12 to 1.15 it is clear that associativity and 

commutativity of a binary operation are properties independent 

of each other, that is, one can not be deduced from the other. 

Example1.31 Let 2Z denote set of all even integers. 2Z, under 

usual multiplication, form a system which is associative, 

commutative but possesses no identity. 

Example1.32 Let M2(Z) =¤�� �
c ¥� |	�, �, c, ¥ ∈ �¦ . M2(Z) under 

usual matrix addition forms a system which is commutative, 

associative. (M2(Z),+) possesses an identity, namely the null 

matrix, and every element in (M2(Z),+) has an inverse in 

(M2(Z),+). 

Example1.33 Let GL(2,R) denote the set of all 2x2 real non-

singular matrices under usual matrix multiplication. The system 

is associative, non-commutative, possesses an identity and every 

element has an inverse in the system. 
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