RESTRUCTURED INORGANIC SYLLABUS (CEMA)

SEM - I

(A) Atomic Structure (L)

H-Spectra; Wave mechanical model; de Broglie relation; Heisenberg Uncertainty Principle & its significance; Schrödinger Wave Equation (qualitative approach); Radial and Radial Probability Fuctions; Angular and angular probability functions (qualitative idea only); s, p and d – type atomic orbital envelope diagrams; nomenclature of atomic orbitals. Exchangeenergy, Hund'srule, limitations of Auf Bau Principle.

(B) Periodic Table (L)

Modern form of Periodic Table (IUPAC version), Nomenclature of Super-heavy elements (Z >100), screening effect and Slater's rules.

Inert Pair Effect, trends in atomic/ionic size, ionization energy, electronegativity and electron affinity of the s-, p-, d- and f- block elements, ionic potential and diagonal relationship in the Periodic Table. Scales of Electronegativity :MullikenScale, Pauling Scale and Alred–Rochow Scale. Variation of electronegativity with bond order and oxidation states.

(C) Radioactivity (L)

Atomic nucleus – nuclear stability, n/p ratio and different modes of decay, nuclear binding energy, nuclear forces, Meson field theory, Nuclear Shell Model (elementary idea) and magic numbers.

Nuclear reactions – nuclear fission, nuclear fusion, spallation and transmutation of elements. Uses of isotopes in Chemistry.

SEM - II

(A) Ionic Bonding (L)

Packing of ions in crystals, radius ratio rules – applications & limitations; lattice energy – Born- Lande' equation and its applications

Born-Haber Cycle and its applications; solvation energy, dissolution of ionic solutes in polar solvents; Polarizability & Fajan's Rules; Stoichiometric and non-stoichiometric defects in crystals (non – mathematical approach), Van der Waal's forces, Hydrogen bonding and its applications.

(B) Coordination Chemistry – I(L)

Double salts, Complex salts, Werner's Coordination Theory, mono- poly- and ambidentate ligands, Chelate complexes, Inner metallic complexes, IUPAC nomenclature of complexes, application of chelates in qualitative and quantitative chemical analysis.

(C) Covalent Bonding – I(L)

Formal Charge, VSEPR theory and structure of inorganic molecules, Berry pseudorotation, hybridization, Bent's rule, dipole moment, resonance.

(A) Redox Equilibrium

L)

Balancing redox reactions by the ion–electron method; Standard redox potential, Nernst equation, influence of pH, precipitation and complexation on redox potential, formal potentials, feasibility of redox titrations, redox potential at equivalent point, redox indicators; redox diagrams – Latimer and Frost diagrams of concerned elements and their applications (typical examples).

(B) Group Chemistry – I: Group 1 and 2 (L)

Solutions of alkali metals in liquid ammonia; complexation with crown–ethers, cryptands and related ligands; basic beryllium acetate; detection of metal ions – Na^+ , K^+ , Mg^{2+} , Ca^{2+} , Sr^{2+} , Ba^{2+} in qualitative analysis.

(C) Group Chemistry – II: Groups 13 & 14 (L)

General trends in the oxidation states, hydrides, oxides, halides of B, Al, Ga, In, Tl; special features in the chemistry of boron trihalides, diborane, boron nitride and borazine; General trends in the oxidation states, catenation property, hydrides, halides and oxides of C,Si,Ge,Sn,Pb; special features in the chemistry of graphite, fullerenes, silicates, silicones and chloroflurocarbons; ultra—pure silicon.

(D) Covalent Bonding – I (L)

Molecular orbital theory: Qualitative approach to molecular orbital theory; MO energy level diagrams of H_2 , Li_2 to N_2 , C_2 , C_2 , C_3 , C_4 , C_5 , C_6 , C_7 , C_8 , C_8 , C_9 ,

Metallic bonding :qualititative treatment of Band Theory; conductors, semiconductors and insulators.

SEM - IV

(A) Definition of acids and bases; solvents (L)

Recapitulation of Arrhenius concept, Bronsted–Lowry definition, solvent system definition, Lux–Flood definition; Relative strength of hydracids, strength of oxoacids, Pauling's rules; HSAB principle, superacids; Solvent properties of water and liquid ammonia; reactions in liquid ammonia.

(B) Acid – Base equilibria (L)

pH (of strong acid/base solution and weak acid/basesolution), buffer solution, pH of a buffer solution, Hendersen's equation, buffer capacity; salt hydrolysis, pH of salt solutions (salt of strong acid/weak base; strong base/weak acid and weak acid / weak base); indicators, indicator constant, choice of indicators in acid – base titrations.

(C) Solubility equilibria(L)

Solubility product & common ion effect; applications in group analysis – precipitation of sulphides and hydroxides.

(D) Group Chemistry – III : Group 15, 16, 17 and 18 (L)

Group 15: Catenation, oxidation states, trends in the hydrides, halides, and oxides; special features in the chemistry of hydrazine, hydroxylamine, hydrazoic acid/azides and phosphonitrilic compounds.

Group 16 : Catenation, atomicity, trends in the halides and hydrides; oxides and fluorides of S and Te; special features in the chemistry of the oxoacids of sulphur; Structure and bonding in O_2F_2 , polythiazyl, tetrasulphurtetranitride.

Group 17: Trends in the Chemistry of oxides, oxoacids and hydracids; special features in the chemistry of interhalogens, polyhalides, pseudohalogens, uses of potassium bromate and potassium hydrogen iodate in quantitative analysis.

Group 18: Trends in the ionization energy and reactivities of He, Ne, Ar, Kr, Xe; reactivity, structure and bonding in fluorides and oxofluorides of Xe.

SEM - V

(A) Isomerism, Reactivity and Stability of coordination complexes (L)

Constitutional, Geometrical and optical isomerism with respect to C.N. = 4 and 6; Mills and Quibell complex, examples of purely inorganic optically active complexes; labile and inert complexes; substitution in square planar complexes and trans – effect (examples and applications); choice of ligands and stability of various oxidation states of the 3d metal ions; stability constant of complexes.

(B) Structure and Bonding in coordination complexes (L)

VBT, CFT, splitting of dⁿ configurations in octahedral and tetrahedral fields, crystal field stabilization energy in weak and strong fields, pairing energy, Jahn – Teller distortion and its application; MOT (elementary idea), sigma and pi – bonding in octahedral complexes (a pictorial approach)

(C) Organometallic Chemistry (L)

18 electron rule and its application to carbonyls (including carbonyl hydrides and carbonylates), nitrosyls, cyanides, metal–carbon sigma and pi – bonded organometallic complexes of transition metals; bonding and IR spectra of carbonyls and nitrosyls; Zeise's salt – its preparation properties and structure; ferrocene – its preparation, properties and structure; elementary idea of fluxional molecules; oxidative addition, reductive elimination and insertion reactions; homogenous catalysis of organometallic compounds – hydrogenation, hydroformylation, and polymerization of alkenes (Ziegler – Natta catalyst)

SEM - VI

(A) Magnetism and Spectra of Coordination Complexes (L)

Orbital and spin magnetic moments, spin only magnetic moments of 3dⁿ ions and their correlation with effective magnetic moments, quenching of magnetic moments in presence of crystal field; ferromagnetic and antiferromagnetic coupling (elementary idea with examples only); d –d spectra, weak–field splitting schemes, qualitative Orgel diagrams for dⁿ systems and their spectroscopic ground states, selection rules for spectral transitions, charge transfer spectra (elementary idea with examples only).

(B) Bioinorganic Chemistry (L)

Essential and trace elements of life; role of metal ions in biology – Na^+ , K^+ , Ca^{2+} , Mg^{2+} , $Fe^{2+/3+}$, $Cu^{+/2+}$, Zn^{2+} ; active site structures and bio-functions of myoglobin, haemoglobin, cytochromes, ferredoxins, carbonic anhydrase; photosynthesis – PS–I and PS–II, sodium ion pump and ionophores, metal ion induced toxicity and chelation therapy, metal ion as drugs (cisplatin and a few gold drugs)

(C) Chemistry of the Lanthanides (L)

General characteristic with respect to electronic configuration, oxidation states and ionization enthalpies, lanthanide contraction, separation of lanthanides by ion – exchange method.