Course: Discipline Specific Core 12

Semester	5	
Paper Number	HCHCR5122T (60 MARKS) & HCHCR5122P (40 MARKS)	
Paper Title	CORE COURSE XII: ORGANIC CHEMISTRY	
No. of Credits	Theory-04, Practicals-02	
Theory/Composite	Composite	
No. of periods assigned	Th: 4	
	Pr: 3	
Name of Faculty member(s)	Dr. Ankur Ray	
	Prof. Dipankar Das	
Course description/objective	Theory:	
	Students will have knowledge about	
	i) Carbocycles and Heterocycles	
	ii) Cyclic Stereochemistry	
	iv) Carbohydrates	
	N Biomologulos	
	V) Biomolecules	
	Duration	
	Placicai.	
	The students will learn to do	
	i) Chromatographic Separations	
	II) Spectroscopic Analysis of Organic Compounds	
Syllabus	Appeyure Core Course: 7	
Synabus	Annexure core course. 7	
Texts		
Reading/Reference Lists	Theory:	
	Clayden, J., Greeves, N., Warren, S. Organic Chemistry, Second edition,	
	Oxford University Press 2012.	
	2. Sykes, P. A guidebook to Mechanism in Organic Chemistry, Pearson Education 2002	
	Smith I. G. Organic Chemistry Tata McGraw-Hill Publishing Company	
	Limited	
	4. Carev. F. A. & Guiliano. R. M. <i>Organic Chemistry</i> . Eighth edition. McGraw	
	Hill Education, 2012.	
	5. Loudon, G. M. Organic Chemistry, Fourth edition, Oxford University Press,	
	2008.	
	6. Eliel, E. L. & Wilen, S. H. Stereochemistry of Organic Compounds, Wiley:	
	London, 1994.	
	7. Nasipuri, D. Stereochemistry of Organic Compounds, Wiley Eastern	
	LIMITEU. 9. Marticon D. N. & Doud D. N. Organia Chamistry, Darling Kinderstey, (India)	
	o. Wortson, K. N. & Boya, K. N. Organic Chemistry, Dorling Kindersley (India) Put 1td (Pearson Education)	
	9 Finar 1.1. Organic Chemistry (Volume 1) Pearson Education	
	10. Graham Solomons, T.W., Fryhle, C. B. <i>Organic Chemistry</i> , John Wiley &	
	Sons. Inc.	
	11. James, J., Peach, J. M. <i>Stereochemistry at a Glance</i> , Blackwell Publishing, 2003.	
	12. Robinson, M. J. T., <i>Stereochemistry</i> , Oxford Chemistry Primer, Oxford	

	 University Press, 2005. 13. Maskill, H., <i>Mechanisms of Organic Reactions</i>, Oxford Chemistry Primer, Oxford University Press. <u>Practical</u> University Hand Book of Undergraduate Chemistry Experiments, edited by Mukherjee, G. N. University of Calcutta, 2003. Practical Workbook Chemistry (Honours), UGBS, Chemistry, University of Calcutta, 2015 Furniss, B.S.; Hannaford, A.J.; Smith, P.W.G.; Tatchell, A.R. Practical Organic Chemistry, 5th Ed., Pearson (2012). Mann, F.G. & Saunders, B.C. Practical Organic Chemistry, Pearson Education. 		
Evaluation	Theory: 60 marks	Practical: 40 marks (Continuous Assessment)	
	CIA: 10 End-Sem: 50	Internal Assessment Exams: 30 Viva (End Sem): 8 Attendance: 2	
Paper Structure for the End Sem Theory Exam (50 marks)	6 (SIX) Questions (each of 10 marks) will be set and the students will have to answer any 5 (FIVE). Each of the Questions (10 marks) will consist of 2 or 3 parts (of 2/ 3/ 4/ 5)		

CHEMISTRY –CC 12: ORGANIC CHEMISTRY

(Credits: Theory-04, Practicals-02)

Theory: 60 Lectures

Carbocycles and Heterocycles

(18 Lectures)

Polynuclear hydrocarbons and their derivatives: synthetic methods include Haworth, Bardhan-Sengupta, Bogert-Cook and other useful syntheses (with mechanistic details); fixation of double bonds and Fries rule; reactions (with mechanism) of naphthalene, anthracene, phenanthrene and their derivatives.

Heterocyclic compounds: 5- and 6-membered rings with one heteroatom; reactivity, orientation and important reactions (with mechanism) of furan, pyrrole, thiophene and pyridine; synthesis (including retrosynthetic approach and mechanistic details): pyrrole: Knorr synthesis, Paal-Knorr synthesis, Hantzsch; furan: Paal-Knorr synthesis, Feist-Benary synthesis and its variation; thiophenes: Paal-Knorr synthesis, Hinsberg synthesis; pyridine: Hantzsch synthesis; benzo-fused 5- and 6-membered rings with one heteroatom: reactivity, orientation and important reactions (with mechanistic details) of indole, quinoline and isoquinoline; synthesis (including retrosynthetic approach and mechanistic details): indole: Fischer, Madelung and Reissert; quinoline: Skraup, Doebner- Miller, Friedlander; isoquinoline: Bischler-Napieralski synthesis.

Cyclic Stereochemistry

(12 Lectures)

Alicyclic compounds: conformational analysis: cyclohexane, mono and disubstituted cyclohexane; symmetry properties and optical activity; topomerisation; ring-size and ease of cyclisation; conformation & reactivity in cyclohexane system: consideration of steric and stereoelectronic requirements; elimination (E2, E1), nucleophilic substitution (S_N1, S_N2, S_Ni, NGP), merged substitution-elimination; rearrangements; oxidation of cyclohexanol, esterification, saponification, lactonisation, epoxidation, pyrolytic *syn* elimination and fragmentation reactions; concept of I-strain;

Pericyclic reactions

(8 Lectures)

Mechanism, stereochemistry, regioselectivity in case of

Electrocyclic reactions: FMO approach involving 4π - and 6π -electrons (thermal and photochemical) and corresponding cycloreversion reactions.

Cycloaddition reactions: FMO approach, Diels-Alder reaction, photochemical [2+2] cycloadditions.

Sigmatropic reactions: FMO approach, sigmatropic shifts and their order; [1,3]- and [1,5]-H shifts and [3,3]-shifts with reference to Claisen and Cope rearrangements.

Carbohydrates

(12 Lectures)

Monosaccharides: Aldoses up to 6 carbons; structure of D-glucose & D-fructose (configuration & conformation); ring structure of monosaccharides (furanose and pyranose forms): Haworth representations and non-planar conformations; anomeric effect (including stereoelectronic explanation); mutarotation; epimerization; reactions (mechanisms in relevant cases): Fischer glycosidation, osazone formation, bromine-water oxidation, HNO₃ oxidation, selective oxidation of terminal –CH₂OH of aldoses, reduction to alditols, Lobry de Bruyn-van Ekenstein rearrangement; stepping–up (Kiliani-Fischer method) and stepping–down (Ruff's & Wohl's methods) of aldoses; end-group-interchange of aldoses; acetonide (isopropylidene) and benzylidene protections; ring-size determination; Fischer's proof of configuration of (+)-glucose.

Disaccharides: Glycosidic linkages, concept of glycosidic bond formation by glycosyl donor-acceptor; structure of sucrose, inversion of cane sugar.

Biomolecules

(10 Lectures)

Amino acids: synthesis with mechanistic details: Strecker, Gabriel, acetamido malonic ester, azlactone, Bücherer hydantoin synthesis, synthesis involving diketopiperazine; isoelectric point, zwitterions; electrophoresis, reaction (with mechanism): ninhydrin reaction, Dakin-West reaction; resolution of racemic amino acids.

Peptides: peptide linkage and its geometry; syntheses (with mechanistic details) of peptides using *N*-protection & C-protection, solid-phase (Merrifield) synthesis; peptide sequence: *C*-terminal and *N*-terminal unit determination (Edman, Sanger & 'dansyl' methods); partial hydrolysis; specific cleavage of peptides: use of CNBr.

<u>Core Course-XII (LAB)</u> (60 Lectures)

A. Chromatographic Separations

- 1. TLC separation of a mixture containing 2/3 amino acids
- 2. TLC separation of a mixture of dyes (fluorescein and methylene blue)
- 3. Column chromatographic separation of leaf pigments from spinach leaves

- 4. Column chromatographic separation of mixture of dyes
- 5. Paper chromatographic separation of a mixture containing 2/3 amino acids
- 6. Paper chromatographic separation of a mixture containing 2/3 sugars

B. Spectroscopic Analysis of Organic Compounds

1. Assignment of labelled peaks in the ¹H NMR spectra of the known organic compounds explaining the relative δ -values and splitting pattern.

2. Assignment of labelled peaks in the IR spectrum of the same compound explaining the relative frequencies of the absorptions (C-H, O-H, N-H, C-O, C-N, C-X, C=C, C=O, N=O, C=C, C=N stretching frequencies; characteristic bending vibrations are included).

3. The students must record full spectral analysis of **at least 15 (fifteen)** compounds from the following list:

(i) 4'-Bromoacetanilide (ii) 2-Bromo-4'-methylacetophenone (iii) Vanillin (iv) 2'-Methoxyacetophenone (v) 4-Aminobenzoic acid (vi) Salicylamide (vii) 2'-Hydroxyacetophenone (viii) 1,3-Dinitrobenzene (ix) *trans*-Cinnamic acid (x) *trans*-4-Nitrocinnamaldehyde (xi) Diethyl fumarate (xii) 4-Nitrobenzaldehyde (xiii) 4'-Methylacetanilide (xiv) Mesityl oxide (xv) 2-Hydroxybenzaldehyde (xvi) 4-Nitroaniline (xvii) 2-Hydroxy-3-nitrobenzaldehyde (xviii) 2,3-Dimethylbenzonitrile (xix) Pent-1-yn-3-ol (xx) 3-Nitrobenzaldehyde (xxi) 3-Ethoxy-4-hydroxybenzaldehyde (xxii) 2-Methoxybenzaldehyde (xxiii) Methyl 4-hydroxybenzoate (xxiv) Methyl 3-hydroxybenzoate (xxv) 3-Aminobenzoic acid (xxvi) Ethyl 3aminobenzoate

(xxvii) Ethyl 4-aminobenzoate (xxviii) 3-nitroanisole (xxix) 5-Methyl-2-nitroanisole (xxx) 3'-Methylacetanilide