Course: Discipline Specific Elective

Semester	6				
Paper Number	HCHDS6032T (60 MARKS) & HCHDS6032P (40 MARKS)				
Paper Title	DSE 3: ORGANIC CHEMISTRY				
No. of Credits	Theory-04, Practicals-02				
Theory/Composite	Composite				
No. of periods assigned	Th: 4				
	Pr: 3				
Name of Faculty member(s)	Dr. Ankur Ray Prof. Dipankar Das				
Course description/objective	Theory:				
	The students will learn				
	i) Advanced Pericyclic reactions				
	ii) Applications and versatility of the Reagents in Organic Synthesis				
	Practical:				
	Various Organic synthesis				
Syllabus	Annexure DSE 3				
Texts					
Reading/Reference Lists	Theory:				
	1. Clayden, J., Greeves, N. & Warren, S. Organic Chemistry, Second edition,				
	Oxford University Press, 2012.				
	2. Keeler, J., Wothers, P. Chemical Structure and Reactivity – An Integrated				
	approach, Oxford University Press.				
	3. Sykes, P. A guidebook to Mechanism in Organic Chemistry, Pearson Education, 2003.				
	4. Smith, J. G. <i>Organic Chemistry</i> , Tata McGraw-Hill Publishing Company				
	Limited. 5. Carey, F. A., Guiliano, R. M. <i>Organic Chemistry</i> , Eighth edition, McGraw Hill Education, 2012.				
	6. Eliel, E. L. & Wilen, S. H. Stereochemistry of Organic Compounds, Wiley:				
	London, 1994.				
	7. Nasipuri, D. Stereochemistry of Organic Compounds, Wiley Eastern Limited.				
	8. Morrison, R. N. & Boyd, R. N. <i>Organic Chemistry</i> , Dorling Kindersley (India)				
	Pvt. Ltd. (Pearson Education).				
	9. Finar, I. L. <i>Organic Chemistry (Volume 1)</i> , Dorling Kindersley (India) Pvt. Ltd. (Pearson Education)				
	10. Fleming, I. Molecular Orbitals and Organic Chemical Reactions,				
	Reference/Student Edition, Wiley, 2009.				
	11. James, J., Peach, J. M. Stereochemistry at a Glance, Blackwell Publishing, 2003.				
	12. Robinson, M. J. T., Stereochemistry, Oxford Chemistry Primer, Oxford University				
	Press, 2005.				
	Practical:				
	Vogel's qualitative Organic Analysis				
	Nad, Mahapatra, Ghosal-Practical Chemistry				
	Calcutta University hand book				
	Recent Journals				

Evaluation	Theory: 60 marks	Practical: 40 marks (Continuous Assessment)	
	CIA: 10 End-Sem: 50	Internal Assessment Exams: 30 Viva (End Sem): 8 Attendance: 2	
Paper Structure for the End Sem Theory Exam (50 marks)	6 (SIX) Questions (each of 10 marks) will be set and the students will have to answer any 5 (FIVE). Each of the Questions (10 marks) will consist of 2 or 3 parts (of 2/3/4/5)		

DSE-3: Organic Chemistry

(Credits: Theory-04, Practicals-02)

Theory: 60 Lectures

(A) Advanced Pericyclic reactions (16 L)

- 1. Mechanistic explanation of electrocyclic reactions with symmetry property
- 2. Analysis of electrocyclic reactions with symmetry property according to Woodward and Hofmann's correlation diagram. Construction of correlation diagram
- 3. Application of Perturbational molecular orbital (PMO) method to cycloaddition reactions:
- 4. Huckel-Mobius method. Selection rules.
- 5. Mechanistic explanation of electrocyclic reactions with PMO method, selection rules.
- 6. Application of PMO method in the [1, j]-sigmatropic rearrangement.
- 7. Cheletropic reactions and mechanistic explanation of cheletropic reactions with FMO approach.
- 8. Mechanistic explanation of 'Ene' and 'Group-transfer' reactions with FMO approach.
- 9. Pericyclic reactions under polar conditions

(B) Advanced heterocyclic reactions (10 L)

- 1. Reactions and synthesis of 1,2- and 1,3-azoles: imidazoles, thiazoles, oxazoles, pyrazoles, isoxazoles, Benzimidazoles.
- 2. Heterocyclic compounds containing a ring-junction nitrogen: Indolizines, aza-indolizines etc.
- 3. Heterocyclic compounds containing more than two atoms: azoles: 1,2,3-triazole, 1,2,4-triazole, tetrazoles; Synthesis and reactions

Applications and versatility of the Reagents in Organic Synthesis (26L)

- 1. Reducing agent: Reduction of dissolving metals, Raney Ni, Wilkinson's catalyst, LiAlH₄, DIBAL, organic reducing agents.
- 2. Oxidation and oxidizing agents: Oxidation with H_2O_2 , $Pb(OAc)_4$, HIO_4 , OsO_4 , $KMnO_4$. Oxidation of alpha carbon with SeO_2 , HNO_2 , $Br_2 + Me_2SO$. Oxidation with SET agents (FeC I_3 , Ag_2O).

Oxidation of primary alcohol with DMSO , pyridine -N-oxide and oxidation of aldehyde, oxidation with Mn(VII), Mn(IV), Cr(VI) , co-reagents.

Oxidation γ^3 -hypervalent iodanes [PhI(OAc)₂, PhIO etc]

- 3. Diversity of reagent in organic synthesis:
 - a. N, S, P yields.
 - b. Organo silicon and organo borane reagents.
 - c. BF₃, NBS.

PRACTICALS- DSE-3 LAB: Organic synthesis

(60 Lectures)

- 1. Separation by column chromatography
- 2. Extraction of curcumin from turmeric
- 3. Synthesis of methyl benzoate
- 4. Diels-Alder reaction between cycloprntadiene and maleic anhydride
- 5. Water mediated Wittig reaction
- 6. Benzoin to benzil synthesis
- 7. Benzil-Benzilic acid rearrangement
- 8. Synthesis of β-phenylhydroxylamine
- 9. Darzen Glycidic ester formation in water