Semester	V			
Paper	HPHDS5032T & HPHDS5032P			
Number				
Paper Title	Nano materials and Applications			
No. of Credits	11 = 06 (Theory - 4, Lab - 2)			
Theory/	Composite			
Composite				
No. of periods	Th:4 periods/week			
assigned	Pr·3 periods/week			
Name of				
Faculty				
member(s)				
memoer(s)				
Course	The Nanomaterials and application course is an emerging domain of physics with			
description	interdisciplinary flavour having interface with practically all major areas of science			
objective	ective & technology like Chemistry, Biology. Medicine etc. It conveys an understand			
	of how it has contributed to the rapidly changing technological developments			
our society. It will enable the student to employ basic skills of classical and				
	quantum theories in the reduced dimensions of nanomaterials.			
	On completion of the course, the student should have the following learning			
outcomes defined in terms of knowledge, skills and general competence:				
	From the Knowledge point of view, the student is able to explain the reduced			
	dimensionality (3D, 2D, 1D and 0D), basic understanding of synthesis of			
	and finally the wide areas of applications			
	From the Skill point of view, the student is able to critically distinguish the			
	synthesis methods suitable for nanomaterials and proper characterization			
	techniques needed.			
	And finally in terms of General competence, the student should have the ability to			
	1) explain the effects of quantum confinement on the electronic structure and			
	corresponding physical and chemical properties of materials at nanoscale.			
	2) choose appropriate synthesis technique to synthesize quantum nanostructures			
	of desired size, shape and surface properties.			
	3) correlate properties of nanostructures with their size, shape and surface			
	() appreciate enhanced sensitivity of nanomaterial based devices and their novel			
	applications in industry			
Syllabus	As enclosed			
Texts	As enclosed			

Course: Department Specific Elective 3 – HPHDS5032T & HPHDS5032P

Reading/	As enclosed	
Reference Lists		
Evaluation	Total – 100 (Theory – 60, Practical – 40)	
	Theory – CIA – 10	
	Semester Examination – 50	
	Group A (25 marks)	Group B (25 marks)
	One 10 marks qs out of two qs	One 10 mark qs out of two qs
	Three 5 mark qs out of five qs	Three 5 mark qs out of five qs

Syllabus:

HPHDS5032T - NANO MATERIALS AND APPLICATIONS [Credits – Theory - 04, Practical – 02; Lectures : Theory – 52, Lab – 39]

Module A

NANOSCALE SYSTEMS: Length scales in physics, Nanostructures: 1D, 2D and 3D nanostructures (nanodots, thin films, nanowires, nanorods), Band structure and density of states of materials at nanoscale, Size Effects in nanosystems, Quantum confinement: Applications of Schrodinger equation- Infinite potential well, potential step, potential box, quantum confinement of carriers in 3D, 2D, 1D nanostructures and its consequences.

[10 Lectures]

SYNTHESIS OF NANOSTRUCTURE MATERIALS: Top down and Bottom up approach, Photolithography. Ball milling. Gas phase condensation. Vacuum deposition. Physical vapour deposition (PVD): Thermal evaporation, E-beam evaporation, Pulsed Laser deposition. Chemical vapour deposition (CVD).Sol-Gel. Electro deposition. Spray pyrolysis. Hydrothermal synthesis. Preparation through colloidal methods.MBE growth of quantum dots.[8 Lectures]

CHARACTERIZATION: X-Ray Diffraction. Optical Microscopy. Scanning Electron Microscopy. Transmission Electron Microscopy. Atomic Force Microscopy. Scanning Tunnelling Microscopy.[8 Lectures]

Module B

[26 Lectures]

[26 Lectures]

OPTICAL PROPERTIES: Coulomb interaction in nanostructures. Concept of dielectric constant for nanostructures and charging of nanostructure. Quasi-particles and excitons. Excitons in direct and indirect band gap semiconductor nanocrystals. Radiative processes: General formalization-absorption, emission and luminescence. Optical properties of heterostructures and nanostructures. [10 Lectures]

ELECTRON TRANSPORT: Carrier transport in nanostrcutures. Coulomb blockade effect, thermionic emission, tunnelling and hopping conductivity. Defects and impurities: Deep level and surface defects. [6 Lectures]

APPLICATIONS: Applications of nanoparticles, quantum dots, nanowires and thin films for photonic devices (LED, solar cells). Nano-composites, CNT based transistors. Nanomaterial Devices: Quantum dots heterostructure lasers, optical switching and optical data storage. Magnetic quantum well; magnetic dots - magnetic data storage. Nano Electromechanical Systems (NEMS).[10 Lectures]

Reference books:

- 1. C.P. Poole, Jr. Frank J. Owens, Introduction to Nanotechnology (Wiley India Pvt. Ltd.).
- 2. H.F. Tibbals et al. Introduction to Nanoscience and Nanotechnology (CRC Press)
- 3. B.S. Murthy et al. Textbook of Nanoscience and Nanotechnology (Springer)

 Introduction to Nanoelectronics, V.V. Mitin, V.A. Kochelap and M.A. Stroscio, 2011, Cambridge University Press.

HPHDS5032P - NANO MATERIALS AND APPLICATIONS LAB (39 Lectures)

- 1. Synthesis of metal nanoparticles by chemical route.
- 2. Synthesis of semiconductor nanoparticles.
- 3. Surface Plasmon study of metal nanoparticles by UV-Visible spectrophotometer.
- 4. XRD pattern of nanomaterials and estimation of particle size.
- 5. To study the effect of size on colour of nanomaterials.
- 6. To prepare composite of CNTs with other materials.
- 7. Growth of quantum dots by thermal evaporation.
- 8. Prepare a disc of ceramic of a compound using ball milling, pressing and sintering, and study its XRD.

9. Fabricate a thin film of nanoparticles by spin coating (or chemical route) and study transmittance spectra in UV-Visible region.

Reference Books:

- 1. C.P. Poole, Jr. Frank J. Owens, Introduction to Nanotechnology (Wiley India Pvt. Ltd.).
- 2. Richard Booker, Earl Boysen, Nanotechnology (John Wiley and Sons).
- 3. S.K. Kulkarni, Nanotechnology: Principles & Practices (Capital Publishing Company)
- 4. K.K. Chattopadhyay and A. N. Banerjee, Introduction to Nanoscience and Technology (PHI Learning Private Limited).

DSE Paper Structure for laboratory

- (a) Marks for experiment : 30 marks
 - (i) Class performance on any one expt. 8
 - (ii) Lab. Viva on the same experiment as (i) 7
 - (iii) LNB for each of the three experiments $-5 \times 3 = 15$
- (b) Grand Viva 8 marks
- (c) Attendance 2 marks

[Students are to complete 3 experiments]