Semester	FIVE		
Paper Number	HSTDS5022T & HSTDS5022P		
Paper Title	Large Sample Theory		
No. of Credits	6		
Theory/Composite	Composite		
No. of periods assigned	Th: 4		
	Pr: 3		
Module	Single		
Course	At the end of the course students should		
description/objective	• Understand different modes of convergence of statistics		
	and inter-relationship among them.		
	• Know about Central Limit Theorem and its applications.		
	• Understand the large sample behaviour of different		
	statistics (based on both moments and quantiles) relating		
	to estimation and tests of hypothesis.		
	 Know about various transformations on statistics and 		
	their use in inferential problems.		
	• Know about Pearsonian Chi-Square statistic and its uses.		
	• Know about different asymptotic properties of		
	estimators.		
Syllabus			
	Limit Ineorems: Convergence in Probability, weak Laws of		
	Distribution relation between two kind of convergence Slutsky's		
	Theorem De-Moivre-Laplace Limit Theorem Normal		
	approximation to Poisson distribution. Statement of Central Limit		
	Theorem (iid case) and its use in test and confidence interval for		
	binomial proportions and Poisson means.		
	[10L]		
	UNIT 2:		
	Standard Errors of Statistics: Derivation and uses of large		
	sample standard error of sample moments, Standard deviation,		
	$Coefficient of variation, b_1 & b_2 measures, Correlationcoefficient Asymptotic distribution of sample quantiles$		
	[14L]		
	Variance Stabilization: Transformation of Statistics, Derivation		
	and use of sin ⁻¹ , square root, logarithmic & Fisher's Z		
	transformations. [10L]		
	UNIT 3:		
	Asymptotic Property of Estimators: Consistency, Asymptotic		
	efficiency, ARE, CAN and BAN estimators. Properties of MLE		
	(statement only) and their uses in testing and confidence		
	[8L]		
	[L ~ _]		
	UNIT 4:		

	Pearsonian χ^2 : Large Sample d statistic & its uses (goodne homogeneity). Yates' correction [10L]	istribution of Pearsonian χ^2 ess of fit, independence, in a 2x2 contingency table.	
List of Practical	 Testing of significance and confidence intervals for single proportion and difference of two proportions using CLT. Testing of significance and confidence intervals for single Poisson mean and difference of two Poisson means using CLT. Testing of significance and confidence intervals concerning sample standard deviation, coefficient of variation and correlation coefficient (both single sample and two sample cases). Testing of significance and confidence intervals using variance stabilizing transformations. Determination of the minimum sample size required to achieve normality by sample proportion, mean and standard deviation. Tests for goodness of fit, independence and homogeneity using Pearsonian chi-square statistic. 		
Reading/Reference Lists	 A.M.Gun, M.K. Gupta & B.Dasgupta (2003): An Outline of Statistical Theory, Vol 1, 4th Edn World Press. A.M.Gun, M.K. Gupta & B.Dasgupta (2005): An Outline of Statistical Theory Vol. 2, 3rd Edn World Press. 		
	3. P. Mukhopadhy Statistics. 3 rd Edn,	 P. Mukhopadhyay (2006): Mathematical Statistics. 3rd Edn, Books and Allied Limited V.K. Rohatgi & A.K.M.E. Saleh (2003): An Introduction to Probability and Statistics, 2nd Edn, Wiley. 	
	4. V.K. Rohatgi & Introduction to F Edn, Wiley.		
	 C.R. Rao (1983): Linear Statistical Inference and its Application. 3rd Edn, Wiley Eastern Limited. R.V. Hogg and A.T. Craig (2002): Introduction to Mathematical statistics. 5th Edn, Pearson Education. 		
Evaluation	Theory	Practical	
	CIA: 10 End-Sem: 50 Total: 60	Continuous assessment: 40	
Paper Structure for	Short questions (5 marks each)	Long questions (15 marks	
End Sem Theory		each)	
	4 out of 6	2 out of 3	