Course	Discipline Specific Core
Semester	V
Paper Number	MBTCR5122T & MBTCR5122P
Paper Title	RECOMBINANT DNA TECHNOLOGY
No. of Credits	6
Theory/Composite	Composite
No. of periods assigned	4 Theory + 4 Practical
Course description/objective	1. Students will be introduced to the basics and applications of
	recombinant DNA technology.
	2. They will learn various aspects about generating clones and gene
	expression using modern and relevant techniques.
	3. Students will be provided with an overview of the application of
	molecular tools and Polymerase chain reaction (PCR). 4. Students will be provided with further knowledge about viral
	vectors (in continuation of the knowledge imparted in General
	Microbiology Module (Semester III).
	5. In practical module the students will be given hands on training of
	some of the techniques discussed in theory classes.
	6. The module seeks to make students well versed with the
	technological aspects of the knowledge about recombinant DNA
	technology.
Syllabus	Theory
	Module A: (36 marks)
	UNIT I: Molecular tools and applications- Restriction modification
	system, restriction mapping, DNA modifying enzymes: ligases,
	polymerases (DNA and RNA), alkaline phosphatases, polynucleotide
	kinases, inhibitors; Gene Recombination and Gene transfer: Transformation, Episomes, Microinjection, Electroporation,
	Ultrasonication; Screening of recombinants.
	UNIT II: Principle and applications of Polymerase chain reaction
	(PCR): RT- (Reverse transcription) PCR; Inverse PCR, Nested PCR,
	Ligation mediated PCR, Indirect end labeling, Rapid Amplification of
	5' and 3' cDNA ends (RACE), Real time PCR, Random and site-
	directed mutagenesis, Primer extension and PCR based methods of
	site directed mutagenesis. Differential display and subtractive
	hybridization.
	UNIT III: Construction and comparison of genomic and cDNA
	library, reverse transcription, Genome mapping, DNA fingerprinting,
	artificial chromosomes (YAC-BAC-PAC). Yeast two hybrid assay;
	Phage display.
	No. of Classes: 3 Classes per week
	Module B: (14 marks)
	UNIT IV: Vectors: cloning vectors (Bacteriophage-derived vectors, artificial chromosomes), Applications of Genetic Engineering in animals: production and applications of transgenic mice, role of ES cells in gene targeting in mice, therapeutic products produced by

	genetic engineering-blood proteins, human hormones, immune modulators and vaccines (one example each).
	No. of Classes: 1 Class per week
	Practical
	1. Making competent cells
	2. Transformation of competent cells. Calculation of transformation
	efficiency.
	3. Isolation and agarose gel electrophoresis of DNA
	4. Restriction digestion of DNA
	5. Isolation of chromosomal DNA from bacteria
	6. Demonstration of PCR from genomic DNA to amplify an insert
	7. Recombinant expression of protein in bacteria: IPTG induction and SDS PAGE.
	8. Qualitative and quantitative analysis of DNA using
	spectrophotometer
Readings	1. Principles of Gene Manipulation & Genomics-Primrose & Twyman.
	2. Molecular Cloning- Sambrook <i>et al</i> .
Evaluation	Theory: Continuous Internal Assessment: 10 marks
	End-Semester Theory Examination: 50 marks
	Practical: Continuous Internal Assessment: 32 marks
	End-Semester Examination: 8 marks
Paper Structure for End Sem	Module A (36 marks)
Theory	Compulsory: 1 question of 8 marks (1 x 8 = 8 marks)
	4 out of 6 questions to be answered of 7 marks each (7 x 4= 28 marks)
	Module B (14 marks)
	Answer any one of the two questions given, each carrying 14 marks.
	(Part questions will not be less than 1 mark and more than 5 marks.)