Course	Discipline Specific Core
Semester	VI
Paper Number	MBTCR6141T
Paper Title	GENOMICS AND PROTEOMICS
No. of Credits	6
Theory/Composite	Theory
No. of periods assigned	5 Theory + 1Tutorial
Course description/objective	The course aims to
	1. impart theoretical knowledge and information about computational
	tools of genomics.
	2. impart theoretical knowledge and provide information about
	computational tools of proteomics.
	3. introduce students to structural and functional genomics and DNA sequencing methods.
	4. introduce students to proteomics and techniques for analysis of
	proteomes.
	5. to provide knowledge about computational tools for high
	throughput handling of gene and protein sequences
	6. provide students with information about web based servers and
	softwares for genome analysis by means of projects/ tutorials.
Syllabus	Module A: (40 Marks)
	UNIT I: Introduction to Genomics: DNA sequencing methods –
	manual & automated: Maxam & Gilbert and Sangers method;
	Pyrosequencing; Genome Sequencing: Shotgun & Hierarchical (clone contig) methods; structural and functional genomics; libraries; RNA
	interference and micro RNA
!	interference and finero KivA
	No. of Classes: 2.5 Classes per week including tutorial.
	Module B: (40 Marks)
	LINITE III. Durdannia Chaminal annuation of matrice District
	UNIT III: Proteomics: Chemical properties of proteins. Physical
	interactions that determine the property of proteins, Short-range interactions, electrostatic forces, van der waal interactions, hydrogen
	bonds, Hydrophobic interactions. Determination of sizes
	(Sedimentation analysis, gel filtration, Introduction to Proteomics,
	Analysis of proteomes. 2D-PAGE. Sample preparation, solubilization,
	reduction, resolution, 2D-DIGE, Reproducibility of 2D-PAGE, Mass
	spectrometry based methods for protein identification: MALDI, ESI-
	MS, <i>Denovo</i> sequencing using mass spectrometric data.
	, , ,
	No. of Classes: 3.5 Classes per week including tutorial.
	Tutorials Conomics President
	Tutorial: Genomics Project Managing and Distributing Genome Data: Web based servers and
	softwares for genome analysis: ENSEMBL, VISTA, UCSC Genome
	Browser, NCBI genome. Selected Model Organisms' Genomes and
	Databases.

- "	
Readings	1. Genes IX by Benjamin Lewin, Johns and Bartlett Publisher, 2006.
	2. Modern Biotechnology, 2nd Edition, S.B. Primrose, Blackwell
	Publishing, 1987.
	3. Molecular Cloning: A Laboratory Manual (3rd Edition) Sambrook
	and Russell Vol. I to III, 1989.
	4. Principles of Gene Manipulation 6th Edition, S.B.Primrose,
	R.M.Twyman and R.W. Old. Blackwell Science, 2001.
	5. Pevsner, J. (2009). Bioinformatics and Functional Genomics.II
	Edition.John Wiley & Sons.
Evaluation	Continuous Internal Assessment (Genomics Project): 20 marks
	End-Semester Theory Examination: 80 marks
Paper Structure for End Sem	Module A (40 Marks)
Theory	Q.1. Five objective type questions each of 2 Marks, i.e. $5 \times 2 = 10$
	marks.
	Q.2, Q.3 and Q.4 are compulsory, each of 10 marks, i.e. $3 \times 10 = 30$
	marks
	Module B (40 Marks)
	Q.5.: compulsory question of 10 marks containing objective questions
	Any 3 questions of 10 marks each from Q.6-Q.9.
	No part will be more than 5 marks.