Course	Discipline Specific Elective
Semester	VI
Paper Number	MBTDS6041T
Paper Title	MICROBIAL PHYSIOLOGY
No. of Credits	6
Theory/Composite	Theory
No. of periods assigned	5 Theory + 1Tutorial
Course description/objective	1. This paper aims at introducing the students to the basic regulatory
	mechanisms underlying chief physiological processes in microbes.
	2. Through this paper, students will be explained about the details of
	bacterial stress response.
	3. The membrane transport processes will be elaborated in this paper.
	4. Through this paper, students will be explained the details of growth
	physiology and nutritional diversity of microbes.
	5.Phototrophic metabolism of microbes will also be elaborated in this
	6 The affact of the anyironment on microhial growth will be
	o. The effect of the environment of finctobial growth will be
Syllabus	Module A: (60 Marks)
Syndous	
	UNIT I: Effect of the environment on microbial growth:
	Temperature - temperature ranges for microbial growth, classification
	based on temperature ranges and adaptations, pH-classification based
	on pH ranges and adaptations, solutes and water activity, oxygen
	concentration, radiation and pressure; diauxie growth curve; bacterial
	stress response: mechanisms of sensing stresses: regulation of
	translation of RpoS (the general stress response activator); small
	molecules (The stringent response), translational response, tmRNA;
	mechanisms of mitigating stresses: pumping out toxins (Antibiotics);
	promoting tolerance (extreme heat and cold), molecular chaperones.
	UNIT II: Transport processes: Metabolite Transport, Diffusion:
	rassive and facilitated, primary active and secondary active transport,
	gloup translocation (phosphotranslerase system), symport (sourdin-
	glucose co-transport, anuport (soutum-potassium anuport) and uniport (transport of glucose and lactose) electrogenic and electro-
	neutral transport (energetics) transport of iron: yeast ABC-
	transport energenes), transport of from, yeast ribe
	No. of Classes: 4 Classes per week including tutorial
	Module B: (20 Marks)
	UNIT III: Growth physiology: Reproductive strategies in bacterial
	cells; bacterial cell cycle (including chromosome replication and
	partitioning – MreB model, cytokinesis – Z ring and Divisome
	complex, and cellular growth and determination of cell shape);
	generation time specific growth rate: microhial growth in natural
	environments (Lichig's Law of the Minimum Shelford's Law of
	Tolerance and Quorum sensing)

	 UNIT IV: Nutritional diversity: Chemolithotrophic metabolism: physiological groups of aerobic and anaerobic chemolithotrophs, hydrogen-oxidizing bacteria and methanogens. UNIT V: Phototrophic metabolism: Diversity of phototrophic bacteria; chemicals and structures; physiology of bacterial photosynthesis: light-dependent reactions, cyclic and non-cyclic photophosphorylation, anoxygenic and oxygenic photosynthesis, light-independent reactions, carbon dioxide fixation (Calvin-Benson cycle). No. of Classes: 2 Classes per week including tutorial
Readings	 Module A: 1. Alberts B, et al. Molecular Biology of the Cell. 2. Karp G. Cell and Molecular Biology – Concepts and Experiments. 3. Weaver. Molecular Biology. 4. Relevant Scientific Literature. Module B 5. Bauman RW. (2011). Microbiology: With Diseases by Taxonomy. 3rd edition. Pearson / Benjamin Cummings. 6. Gottschalk G. (1986). Bacterial Metabolism. 2nd edition. Springer Verlag 7. Madigan MT, Martinko JM and Parker J. (2003). Brock Biology of Microorganisms.10th edition. Pearson / Benjamin Cummings. 8. Moat AG and Foster JW. (2002). Microbial Physiology. 4th edition. John Wiley & Sons.
	 Reddy SR and Reddy SM. (2005). Microbial Physiology. Scientific Publishers India. Stanier RY, Ingrahm JI, Wheelis ML and Painter PR. (1987). General Microbiology. 5th edition, McMillan Press. Willey JM, Sherwood LM, and Woolverton CJ. (2008). Prescott, Harley and Klein's Microbiology. 7th edition. McGraw Hill Higher Education.
Evaluation	Continuous Internal Assessment: 20 marks End-Semester Theory Examination: 80 marks
Paper Structure for End Sem Theory	 Module A (60 marks) 1 question (Compulsory) and any two from the remaining three questions. Compulsory question (20 marks) Any two out of rest four questions (10 marks each) i.e. 10 x 4 = 40 marks. Module B (20 marks) 1 question (Compulsory) and any two from the remaining three questions. Compulsory question (5 marks) Any two out of three questions (7.5 marks each) i.e. 7.5 x 2 = 15 marks.