Course	Discipline Specific Core
Semester	III
Paper Number	MBTCR3072T & MBTCR3072P
Paper Title	CHEMISTRY 1
No. of Credits	6
Theory/Composite	Composite
No. of periods assigned	4 Theory + 4 Practical
Course description/objective	The course aims to
	1. introduce students to basic chemistry.
	2. introduce students to the application of basic chemistry to the
	biological system.
	3. enable students understand stereochemistry and its applications.
	4. provide knowledge about acid, base and buffer and their
	applications. 5. enable students to understand chemical bonding and its application.
	6. enable students to qualitatively analyse solid organic compounds in
	the practical module.
Syllabus	Theory
by nuous	Theory
	Unit I: Acid-base Concept and Ionic Equilibrium: Arrhenius
	concept, Theory of solvent system, Bronsted and Lowry's concept,
	Relative strength of acids, Lewis concept, HSAB principle. Ionization
	of water, Ionic product of water, pH scale, Salt hydrolysis-calculation
	of hydrolysis constant, degree of hydrolysis and pH for different salts.
	Buffer solutions, pH of buffer solutions, Henderson equation, Buffer
	capacity, Buffer solution in biological systems. Common ion effect,
	Solubility and solubility product of sparingly soluble salts-
	applications of solubility product principle.
	Unit II: Stereochemistry: Representation of molecules in Fischer, Flying-wedge, Sawhorse and Newman formulae and their
	interconversions. Asymmetry and Dissymmetry, Enatiomerism and
	diastereomerism, Concept of chirality. Elements of symmetry-
	rotational axis of symmetry, plane of symmetry, center of symmetry
	and alternating axis of symmetery. Optical activity, Specific rotation,
	Racemization, Optical purity. Stereogenic centres, Isomerism
	involving like/unlike chiral centres, Chirotopicity and achirotopicity.
	D/L, R/S, E/Z, syn/anti, cis/trans, meso/dl, threo/erythro
	nomenclature. Conformational nomenclature- dihedral angle,
	eclipsed/staggered and gauche/anti, energy barrier of rotation.
	Relative stability of conformers on the basis of steric effect, dipole-
	dipole interactions, H-bonding. Conformational analysis of ethane,
	propane, n-butane, 2-methylbutane.
	Unit III: Chemical Bonding I: Introduction to chemical bonding,
	Types of chemical bonds. Ionic bonding– General characteristics of
	ionic bonding, lattice energy and solvation energy and their
	importance in the context of stability and solubility of ionic
	compounds. Born-Lande equation and its applications, Born-Haber cycle and its applications, Solvation energy. Polarizing power and
	polarizability, Ionic potential, Fajan's rules, Ionic character in
	covalent compounds. Covalent bonding- Valence Bond theory (VBT),
	covarent compounds. Covarent bonding- valence bond theory (VDI),

	Hybridization involving s, p and d orbitals, Equivalent and non- equivalent hybrid orbitals, Bent's rule. Valence Shell Electron Pair Repulsion (VSEPR) Theory, Shapes of molecules, Bond moment and dipole moment. Hydrogen bonding and van der Waals forces. Molecular Orbital approach- Rules for the LCAO method, bonding and antibonding MOs and their characteristics for s-s, s-p and p-p combinations of atomic orbitals, bond order, MO diagrams of some homonuclear diatomic molecules of 1st period. Co-ordinate bonding and co-ordination compounds- Lewis acid base adducts, Double salts and complex salts. Warner theory of co- ordination, Ligand and its classifications, Co-ordination number. Chelate complexes, Inner metallic complexes, Chelate effect, Applications of co-ordination compounds (analytical application, industrial application, chelation therapy). IUPAC nomenclature (up to two metal centres). Structural and stereoisomerism in respect of co- ordination number 4 and 6. Determination of configurations of cis- and trans-isomers by chemical methods. Stability constants of co- ordination complexes. No. of Classes: 4 Classes per week Practical Qualitative analysis of Single Solid Organic Compound: (i) Detection of special elements (N, Cl, Br, I and S). (ii) Detection of the following functional groups by systematic chemical tests: Amine (-NH ₂), Nitro (-NO ₂), Amide (-CONH ₂), Anilide (-CONHAr), Phenolic hydroxyl (-OH), Carboxylic acid (- COOH), Carbonyl (>C=O).
Readings	 Theory: 1. R. P. Sarkar, General and Inorganic Chemistry (Part-I), New Central Book Agency (P) Limited, 3rd Revised edition, 2011. 2. S. Sengupta, Basic Stereochemistry of Organic Molecules, Oxford University Press, First edition, 2014. 3. E. L. Eliel, Stereochemistry of Carbon Compounds, Tata McGraw Hill education, 2000. 4. J. D. Lee, Concise Inorganic Chemistry, ELBS, 1991. Practical: A. K. Nad, B. Mahapatra and A. Ghosal, An Advanced Course in Practical Chemistry, New Central Book Agency (P) Limited, 2014.
Evaluation	 Practical Chemistry, New Central Book Agency (P) Limited, 2014. Theory: Continuous Internal Assessment: 10 marks End-Semester Theory Examination: 50 marks Practical: Continuous Internal Assessment: 32 marks End-Semester Examination: 8 marks
Paper Structure for End Sem Theory	Section A: Compulsory Objective questions: $1 \times 6 = 6$ marks Section B: Any one from two subjective questions with subparts: $12 \times 1 = 12$ marks.

Section C: Any one from two subjective questions with subparts:
$12 \times 1 = 12$ marks.
Section D: Any two from three subjective questions with subparts:
$10 \times 2 = 20$ marks.
(No subpart will be less than 1 mark or more than 5 marks)