Course: Discipline Specific Elective [Semester-6]

Semester	6
Paper Number/ Code	Paper number: 3 Paper code: HMTDS6031T
Paper Title	Motion in two dimension and Rigid Dynamics
No. of Credits	6
Theory/ Composite	Theory
No of periods assigned	Th:6
Name of Faculty Member(s)	Prof. Anindya Dey
	Prof. Diptiman Saha
Course Description/ Objective	 Two dimensional motion is studied looking into Cartesian system, polar coordinate system and tangent-normal system as manifestation of different choices of basis of R². Problem specific basis choice realization is the primary goal. Motion in a resisting medium is a direct use of Cartesian system. The study of central orbit through polar coordinates and its stability through manifestation of effective potential is another objective. Constrained motion is studied as an application of tangent-normal system. Solving variety of simple problems to explore physical insight of the problem Translation and rotational motion of a rigid body is seen as evolving from Isometry in R³. Vectorial treatment done in developing the subject as it helps treat motion in 2D and in 3D on the same footing and tools of linear algebra used in the treatment of inertia matrix and its physical findings. Equations of motion of a rigid body derived from D'Alembert's principle. Motion about a fixed axis, compound pendulum and motion in 2D studied as its particular applications.

	studied.
Syllabus	Motion in two dimensions (39 classes)
	Introducing different co-ordinate systems (Cartesian,
	Polar, Tangent-Normal), depending on the symmetry of
	the problems under discussion, all being viewed as
	different choices of basis of R^2 . Deduction of expressions
	of velocity & acceleration of a moving particle in
	Cartesian, Polar, Tangent-normal and rotating co-ordinate
	system by either vector or matrix method.[6]
	Inertial Cartesian co-ordinate system in \mathbb{R}^2 . Motion of a
	projectile under gravity in a resisting mediumconcept
	of terminal velocity. [6]
	Motion of a particle described by plane polar co-ordinate
	system in R^2 [6]
	Central force & central orbits. Why central orbit is a
	planar orbit.Characteristics of a central orbit-Apses & Apsidal angle. Idea of effective potential .Stability or
	Central Orbits. [10]
	Motion under Inverse square law and classification
	orbits. [4]
	Constrained motion on a rough or smooth plane curves
	(cycloid, parabola & circles only) [7]
	Rigid Dynamics (39 classes)
	Two possible motion of a rigid body—translation and
	rotation, emerging from the idea of isometry in $\begin{bmatrix} 3\\ (3) \end{bmatrix}$.
	Kinetic energy of a rigid body and Inertia Matrix(3)
	Determination of moments of inertia of various rigid
	bodies —Theorems of parallel axes and perpendicular
	axes (2) <u>Diagonalisability</u> of the Inertia Matrix and
	emergence of the ideas of principal moments and
	principal axes(2). Momental ellipsoids (1). <u>Equimomenta</u> <u>bodies</u> and related results (4) Determination of whether a
	straight line is a principal axis at some point on the line
	(2)).
	<u>D'Alembert's Principle</u> and general equations of motion
	of a rigid body. Independence of motion of centre of
	inertia and motion relative to the centre of inertia: Non
	collinearity of angular velocity and angular momentum
	Theory and problems (6).
	Motion of a rigid body about a fixed axis. (4)
	<u>Compound Pendulum: theory and problems</u> (4).
	Motion of a rigid body in two dimensions: theory and

Texts	elementary problems. [5] Principles of conservation of linear momentum, angular momentum and energy under finite forces: theory only (3). 1. Classical Mechanics—N. C. Rana, P. S. Joag
	2. Rigid Dynamics—Motiur Rahaman.
Reading/Reference Lists	 Dynamics of a Particle and of Rigid Bodies—S. L. Loney Rigid Dynamics—Motiur Rahaman. Analytical Dynamics— Saha & Ganguly Advanced Analytical Dynamics—Utpal Chatterjee Classical Mechanics J.C. Upadhyaya
Evaluation	CIA: 20 End-Sem: 80[40 +40]