Semester	Ι
Paper Number	MECO4103
Paper Title	Quantitative Economic Analysis I
No. of Credits	6
Theory/Composite	Theory
No. of periods	6 Theory
assigned	
Course	Traditional advanced calculus is a course with topics in calculus emphasizing
description/objective	problem solving method. This course emphasizes on theory.
	To provide an accessible, reasonably paced course in fundamental concepts and
	techniques of real analysis.
	The course intends to go beyond the routine manipulations of formulas to solve
	standard problems and to develop the ability to think deductively and analyse
	The objective is to give a thorough treatment of sequences in P and the associated
	limit concept
	5 To understand the importance of linear mathematical models in economics
	6. The use of differential equations to study simultaneous system.
Svllabus	Module 1: Real Analysis (50 Marks)
5	Unit 1 : Sets and functions- Subsets, Algebraic Operations on Sets- Cartesian
	Product of sets-
	Relation on a set- order relation on a set- Function- equipotent sets - enumerable
	sets.
	Unit 2 :The Real Numbers- Natural numbers, Integers- rational numbers, Real
	Numbers(extended set)
	Unit 3 : Sets in R – Interval, Neighborhood, Interior Point, Open Set, Limit Point,
	Isolated Point, Bolzano-Weierstrass Theorem, Derived Set, Closed Set.
	Unit 4 : Sequence – Real Sequence, Bounded sequence, Limit of a sequence,
	convergent sequence, Limit theorems, divergent sequence, some important limits,
	compact set Cauchy Criteria
	Unit 5: Series: Infinite series series of positive terms tests for convergence
	conditionally convergent series.
	Unit 6 : Limits - Limits of a function, one-sided limits, infinite limits, limits at
	infinity , infinite limits at infinity, limits of monotone function.
	Unit 7 : Continuity – Continuity of some important functions, discontinuity,
	properties of Continuous functions- intermediate value theorem , uniform
	continuity-continuity on a compact set.
	Module 2: Linear Algebra and Programming (30 marks)
	Unit 1: Introduction to Matrices and Vectors: Matrix, Determinant, Inverse
	Matrix, Special Matrix Unit 2: Eigenvalues and Eigenvector, Vector spaces, Pank of a matrix. The Eigen
	problem. The Diagonlisation of a Square Matrix, Ouadratic Forms
	Unit 3: Concave Programming and the Kuhn-Tucker conditions- Optimisation
	over an Interval. Direct Restrictions on Variables. The Concave Programming
	Problem, Many variables and Constraints.
	Unit 4: Simultaneous Systems of Differential Equations-Linear Differential
	Equation System, Stability Analysis and Phase Diagrams.

Readings	Module 1	Module 1				
	• Bartle R.G & Sherbert D.R: Introduction to Real Analysis, John Wiley & Sons, 1982.					
	• Goldberg R.R: Methods of Real Analysis, Oxford-IBH, 1970					
	• Apostol T.M.: Mathematical Analysis, Addison Wesley, 1974.					
	• Proter M.H. Verlag,1991	roter M.H. & Morrey C.B.: A First Course in Real Analysis, Springer- 'erlag, 1991.				
	• Royden H.L	Royden H.L.: Real Analysis, Macmillan, N.Y., 1988				
	• Rudin W.: P	Rudin W.: Principles of Mathematical Analysis, McGraw-Hill, 1964.				
	• Parzinsky W.R. & Zupse P.W.: Introduction to Mathematical Analysis,McGraw-Hill, 1982.					
	• White A.J.:	Wesley, 1977.	ey, 1977.			
	Module 2					
	 G. Hadley-Linear Algebra. Narosa Publishing House 1987. K.Sydsaeter and P.Hammond, <i>Mathematics for Economic Analysis</i>, Pearson Educational Asia: Delhi,2002. M.D. Intrilligator-Mathematical Optimisation and Economic Theory, Prentice- Hall 1971. Lawrence Blume and Carl Simon, <i>Mathematics for Economists</i>,W.W. Norton and Company, 1994. Chiang &Wainwright(2017) Fundamental Methods of Mathematical Economics Paperback, McGraw Hill 					
Evaluation	Continuous Internal Assessment: 20 marks					
	End- Semester Theory Examination: 80 marks					
Paper Structure for	Module	No. of Questions to	No. of Alternatives	Marks		
End Sem Theory	1,10 0010	he Answered		1.1.1.1.0		
ý		oe i mowered				
	Module 1	4	5	5 x 4 = 20		
		3	4	$10 \ge 3 = 30$		
			2	5 0 10		
	Module 2	2	3	$5 \ge 2 = 10$		
		2	3	$10 \ge 2 = 20$		
	Total Marks			80		