Course	Discipline Specific Core
Semester	VI
Paper Number	MBTCR6141T
Paper Title	GENOMICS AND PROTEOMICS
No. of Credits	6
Theory/Composite	Theory
No. of periods assigned	5 Theory + 1Tutorial
Course description/objective	The course aims to
	impart theoretical knowledge and information about computational
	tools of genomics.
	impart theoretical knowledge and provide information about
	computational tools of proteomics.
	introduce students to structural and functional genomics and DNA
	sequencing methods.
	introduce students to proteomics and techniques for analysis of
	proteomes.
	to provide knowledge about computational tools for highthroughput
	handling of gene and protein sequences
	provide students with information about web based servers and
Syllobus	Modulo A: (40 Morke)
Synabus	Woulle A: (40 Marks)
	INTT I
	Introduction to Genomics DNA sequencing methods - Insights into Long
	Read and Short Read sequencing. Data output formats. Sequence
	Assembly, Genome Annotation, genome analysis, Gene prediction,
	Promoter prediction, Repeat Masking, Degradome Sequencing and
	applications. Insights into single cell genomics.
	Unit II
	The human genome project. Concepts of draft and whole genome,
	Controversies associated with the human genome project and recent
	developments. Structural, Functional and Comparative Genomics. Concept
	of Pangenome and use of graphs, applications of genome data in forensics,
	disease diagnosis and genetic counselling.
	UNIT III (5 Periods): Tutorial
	Managing and Distributing Genome Data: Web based servers and softwares
	for genome analysis: ENSEMBL, VISTA, UCSC Genome Browser,
	INCET genome. Selected model Organisms Genomes and Databases.
	No. of Classes: 3 /week.
	Module B: (40 Marks)
	UNIT IV. Proteomics. Chemical properties of proteins. Physical
	interactions that determine the property of proteins. Short-range
	interactions, electrostatic forces, van der Waals interactions, hydrogen
	bonds. Hydrophobic interactions. Determination of sizes gel filtration
	Introduction to Proteomics. Top-down and Bottom-up proteomics
	Analysis of proteomes tools. 2D-PAGE. Sample preparation.
	solubilization, resolution, 2D-DIGE. Reproducibility of 2D-
	PAGE, Mass spectrometry based methods for protein identification:
	MALDI, ESI- MS, Denovo sequencing using mass spectrometric data.

	No. of Classes: 3 / week.
Readings	 Genes IX by Benjamin Lewin, Johns and Bartlett Publisher, 2006. Modern Biotechnology, 2nd Edition, S.B. Primrose, Blackwell Publishing, 1987.
	. Molecular Cloning: A Laboratory Manual (3rd Edition) Sambrookand Russell Vol. I to III, 1989.
	. Principles of Gene Manipulation 6th Edition, S.B.Primrose, R.M.Twyman and R.W. Old. Blackwell Science, 2001.
	. Pevsner, J. (2009). Bioinformatics and Functional Genomics.II Edition.John Wiley & Sons.
Evaluation	Continuous Internal Assessment (Genomics Project): 20 marks End-Semester Theory Examination: 80 marks
Paper Structure for End Sem	Module A (40 Marks)
Theory	Q.1. Five objective type questions each of 2 Marks, i.e. $5 \ge 2 = 10$ marks.
	Q.2, Q.3 and Q.4 are compulsory, each of 10 marks, i.e. $3 \times 10 = 30$ marks
	Module B (40 Marks)
	Q.5.: compulsory question of 10 marks containing objective questions Any 3 questions of 10 marks each from Q.6-Q.9. No part will be more than 5 marks.